We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Experimental Drug Targets Diseases Caused by Toxic RNA Nucleotide Repeats

By LabMedica International staff writers
Posted on 15 Jun 2016
A small molecule drug designed to interact with defective RNA was shown to displace sequestered proteins and correct defects in cells derived from patients suffering from the incurable neuromuscular disorder spinocerebellar ataxia type 10 (SCA10).

SCA10 is characterized by slowly progressive cerebellar ataxia that usually starts as poor balance and unsteady gait, followed by upper-limb ataxia, scanning dysarthria, and dysphagia. More...
The disease is exclusively found in Latin American populations, particularly those with Amerindian admixture. Abnormal tracking eye movements are common. Recurrent seizures after the onset of gait ataxia have been reported with variable frequencies among different families. Some individuals have cognitive dysfunction, behavioral disturbances, mood disorders, mild pyramidal signs, and peripheral neuropathy.

SCA10 is one of several disorders including Huntington's disease, fragile X-associated tremor ataxia syndrome, and myotonic dystrophy type 1 and 2 that are caused by repeated nucleotide RNA sequences. In SCA10 a pentanucleotide repeat disrupts mitochondria function. Currently, there have been no convenient means for correcting this type of RNA defect.

Investigators at The Scripps Research Institute (Jupiter, FL, USA) searched for small molecules that could selectively bind RNA base pairs by probing a library of RNA-focused small molecules.

They reported in the June 1, 2016, online edition of the journal Nature Communications that they had identified small molecules with benzamidine moieties that were able to bind selectively to AU (adenine-uracil) base pairs. Armed with this knowledge, the investigators synthesized a dimeric compound (2AU-2) that targeted the pathogenic RNA - containing expanded r(AUUCU) repeats - that causes SCA10 in patient-derived cells.

Treatment of SCA10-derived cells with 2AU-2 corrected various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of the enzyme caspase 3, and reduction of nuclear foci.

"More than 30 diseases, all of them incurable, are caused by RNA repeats," said Dr. Matthew Disney, professor of chemistry at The Scripps Research Institute. "By a thorough basic science investigation, we identified small molecules that target RNA base pairs precisely. We then leveraged this information to design the first drug candidate that binds to disease-causing defects in SCA10. Application of the drug candidate returns certain aspects of those cells to healthy levels – it is like the defect is not even there. We are in the process of developing tools that allow one to design small molecules to target any RNA structural motif in a complex cellular environment."

Related Links:
The Scripps Research Institute



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
Clinical Chemistry System
P780
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.