We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoprobes Enable Measurement of T-Cell Binding Forces

By LabMedica International staff writers
Posted on 02 Jun 2016
A team of biochemical engineers has demonstrated that activation of immune system T-cells by foreign antigens has a physical component that is just as important to the process as immunochemical recognition.

T-cells are triggered when the T-cell receptor (TCR) encounters its antigenic ligand, the peptide-major histocompatibility complex (pMHC), on the surface of antigen presenting cells (APCs). More...
Because T-cells are highly migratory and antigen recognition occurs at a junction where the T-cell physically contacts the APC, there are long-standing questions of whether T-cells transmit defined forces to their TCR complex and whether biophysical coupling influences immune function.

In an attempt to answer these questions investigators at Emory University (Atlanta, GA, USA) developed DNA-based gold nanoparticle tension sensors that fluoresce in response to a mechanical force as small as one piconewton (10 to the minus 12 newtons). The investigators designed a series of experiments in which mouse T-cells interacted with a series of eight amino acid peptide ligands that differed in the number four amino acid position. The amount of force that was applied by the T-cell was mapped using tension probes of different reactivity. Probes that responded to greater than 19 piconewtons did not fluoresce, while probes that reacted to less than 12 piconewtons produced a high signal. Video obtained through a fluorescent microscope enabled the investigators to measure and record the responses of the T-cells as they moved across the ligands.

Results published in the May 2, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that naïve T-cells harnessed cytoskeletal coupling to transmit from 12-19 piconewtons of force to their TCRs within seconds of ligand binding and preceding initial calcium signaling. CD8 coreceptor binding and lymphocyte-specific kinase signaling were required for antigen-mediated cell spreading and force generation. T-cells displayed a dampened and poorly specific response to antigen agonists when TCR forces were chemically abolished or physically adjusted to a level below about12 piconewtons.

"We have provided the first direct evidence that a T-cell gives precise mechanical tugs to other cells," said senior author Dr. Khalid Salaita, professor of chemistry at Emory University. "And we have shown that these tugs are central to a T-cell's process of deciding whether to mount an immune response. A tug that releases easily, similar to a casual handshake, signals a friend. A stronger grip indicates a foe."

"As a T-cell moves across a cell's surface and encounters a ligand, it pulls on it," said Dr. Salaita. "It does not pull very hard; it is a very precise and tiny tug that is not sustained. The T-cell pulls and stops, pulls and stops, all across the surface. It is like the T-cell is doing a mechanical test of the ligand. If you view this T-cell response purely as a chemical process, it does not fully explain the remarkable specificity of the binding. When you take the two components - the TCR and the ligand on the surface of cells - and just let them chemically bind in a solution, for example, you cannot predict what will trigger a strong or a weak immune response."

Related Links:
Emory University


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Staining Management Software
DakoLink
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.