We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoprobes Enable Measurement of T-Cell Binding Forces

By LabMedica International staff writers
Posted on 02 Jun 2016
A team of biochemical engineers has demonstrated that activation of immune system T-cells by foreign antigens has a physical component that is just as important to the process as immunochemical recognition.

T-cells are triggered when the T-cell receptor (TCR) encounters its antigenic ligand, the peptide-major histocompatibility complex (pMHC), on the surface of antigen presenting cells (APCs). More...
Because T-cells are highly migratory and antigen recognition occurs at a junction where the T-cell physically contacts the APC, there are long-standing questions of whether T-cells transmit defined forces to their TCR complex and whether biophysical coupling influences immune function.

In an attempt to answer these questions investigators at Emory University (Atlanta, GA, USA) developed DNA-based gold nanoparticle tension sensors that fluoresce in response to a mechanical force as small as one piconewton (10 to the minus 12 newtons). The investigators designed a series of experiments in which mouse T-cells interacted with a series of eight amino acid peptide ligands that differed in the number four amino acid position. The amount of force that was applied by the T-cell was mapped using tension probes of different reactivity. Probes that responded to greater than 19 piconewtons did not fluoresce, while probes that reacted to less than 12 piconewtons produced a high signal. Video obtained through a fluorescent microscope enabled the investigators to measure and record the responses of the T-cells as they moved across the ligands.

Results published in the May 2, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that naïve T-cells harnessed cytoskeletal coupling to transmit from 12-19 piconewtons of force to their TCRs within seconds of ligand binding and preceding initial calcium signaling. CD8 coreceptor binding and lymphocyte-specific kinase signaling were required for antigen-mediated cell spreading and force generation. T-cells displayed a dampened and poorly specific response to antigen agonists when TCR forces were chemically abolished or physically adjusted to a level below about12 piconewtons.

"We have provided the first direct evidence that a T-cell gives precise mechanical tugs to other cells," said senior author Dr. Khalid Salaita, professor of chemistry at Emory University. "And we have shown that these tugs are central to a T-cell's process of deciding whether to mount an immune response. A tug that releases easily, similar to a casual handshake, signals a friend. A stronger grip indicates a foe."

"As a T-cell moves across a cell's surface and encounters a ligand, it pulls on it," said Dr. Salaita. "It does not pull very hard; it is a very precise and tiny tug that is not sustained. The T-cell pulls and stops, pulls and stops, all across the surface. It is like the T-cell is doing a mechanical test of the ligand. If you view this T-cell response purely as a chemical process, it does not fully explain the remarkable specificity of the binding. When you take the two components - the TCR and the ligand on the surface of cells - and just let them chemically bind in a solution, for example, you cannot predict what will trigger a strong or a weak immune response."

Related Links:
Emory University


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Capillary Blood Collection Tube
IMPROMINI M3
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.