We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Copper Therapy Cures ALS Mouse Model

By LabMedica International staff writers
Posted on 09 Feb 2016
Selective delivery of copper (Cu) to the central nervous system effectively treats the motor neuron disease amyotrophic lateral sclerosis (ALS) in the most widely used mouse model of the disorder.

ALS is a progressive and fatal neurodegenerative disease caused by the death and deterioration of motor neurons in the spinal cord that is linked to mutations in the enzyme copper, zinc superoxide dismutase (Cu, Zn SOD). More...
Copper helps to stabilize the three-dimensional structure of this antioxidant enzyme, but when it lacks metal co-factors, SOD can unfold and become toxic, leading to the death of motor neurons.

Over-expression of mutant Cu, Zn SOD in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan of these animals by more than a few weeks.

The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically mice that have been genetically engineered to express human CCS while co-expressing mutant SOD die within two weeks of birth.

Hypothesizing that co-expression of CCS created copper deficiency in the spinal cord, investigators at Oregon State University (Corvallis, USA) treated these baby mice with the PET (positron emission tomography)-imaging agent CuATSM (diacetyl-bis(N4-methylthiosemicarbazone)), which is known to deliver copper into the central nervous system within minutes.

The investigators reported in the January 27, 2016, online edition of the journal Neurobiology of Disease that CuATSM prevented the early mortality of the CCSxSOD mice, while markedly increasing the level of Cu, Zn SOD protein in their ventral spinal cords. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within three months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression.

All human ALS patients express CCS, raising the hope that familial ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.

"We are shocked at how well this treatment can stop the progression of ALS," said senior author Dr. Joseph Beckman, professor of biochemistry and at Oregon State University. "We have a solid understanding of why the treatment works in the mice, and we predict it should work in both familial and possibly sporadic human patients, but we will not know until we try. We want people to understand that we are moving to human trials as quickly as we can. In humans who develop ALS, the average time from onset to death is only three to four years."

Related Links:

Oregon State University



New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
8-Channel Pipette
SAPPHIRE 20–300 µL
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.