We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Viscoelastic Hydrogels Promote Bone Formation in 3D Cell Cultures

By LabMedica International staff writers
Posted on 15 Dec 2015
Stem cell researchers have devised a viscoelastic hydrogel matrix that encourages stem cells grown in three-dimensional culture to differentiate into bone tissue, which has promising applications in the realm of bone regeneration, growth, and healing.

Viscoelasticity is a molecular rearrangement. More...
When stress is applied to a viscoelastic material such as a polymer, some areas of the material's long polymer chains change positions. This movement or rearrangement is called creep. Polymers remain a solid material even when these parts of their chains are rearranging in order to accompany the stress, and as this occurs, it creates a back stress in the material. When the back stress is the same magnitude as the applied stress, the material no longer creeps. When the original stress is taken away, the accumulated back stresses will cause the polymer to return to its original form. The material creeps, which gives the prefix visco-, and the material fully recovers, which gives the suffix- elasticity.

Investigators at Harvard University (Cambridge, MA, USA) developed hydrogels for three-dimensional culture with different stress relaxation responses. They reported in the November 30, 2015, online edition of the journal Nature Materials that these types of materials enhanced cell spreading, proliferation, and the osteogenic differentiation of mesenchymal stem cells (MSCs) in cultures with gels with faster relaxation rates. Strikingly, MSCs formed a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels. The effects of stress relaxation were mediated by adhesion-ligand binding, actomyosin contractility, and mechanical clustering of adhesion ligands.

"This work both provides new insight into the biology of regeneration, and is allowing us to design materials that actively promote tissue regeneration," said senior author Dr. David Mooney, professor of bioengineering at Harvard University. "In addition to introducing a new concept to the fields of mechanobiology and regenerative medicine, I expect this work will lead to an explosion of new ideas and research to examine how a number of other material mechanical properties influence cell behavior."

The Harvard University Office of Technology Development has filed a patent application and is actively exploring commercial opportunities for the viscoelastic cell culture technology.

Related Links:

Harvard University



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
8-Channel Pipette
SAPPHIRE 20–300 µL
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.