Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Algorithms Allow Automated Monitoring of Individual Cell-to-Cell Interactions

By LabMedica International staff writers
Posted on 25 Aug 2015
A novel combination of microscopy, time-lapse video recording, and analytical algorithms enables tracking of individual cell-to-cell interactions, which will boost research towards cancer immunotherapy treatments.

The technique, Time-lapse Imaging Microscopy in Nanowell Grids (TIMING) was developed by investigators at the University of Houston (TX, USA) and their colleagues at the University of Texas M.D. More...
Anderson Cancer Center. Studies using this method were carried out using fluorescently labeled human T-cells, natural killer cells (NK), and various target cells (NALM6, K562, EL4), which were co-incubated on polydimethylsiloxane nanowell arrays and imaged using multichannel time-lapse microscopy.

Novel cell segmentation and tracking algorithms accounted for cell variability and exploited the nanowell confinement property to increase the yield of correctly analyzed nanowells from 45% (existing algorithms) to 98% for wells containing one effector and a single target, enabling automated quantification of cell locations, morphologies, movements, interactions, and deaths without the need for manual proofreading.

Automated analysis of recordings from 12 different experiments published in the June 9, 2015, online edition of the journal Bioinformatics demonstrated automated nanowell delineation accuracy greater than 99%, automated cell segmentation accuracy greater than 95%, and automated cell tracking accuracy of 90%, with default parameters, despite variations in illumination, staining, imaging noise, cell morphology, and cell clustering.

Example analysis revealed that NK cells efficiently discriminated between live and dead targets by altering the duration of conjugation. The data also demonstrated that cytotoxic cells displayed higher motility than non-killers, both before and during contact.

"We have developed a game-changing piece of software that can accurately analyze an entire grid of nanowell videos and make quantitative measurements," said senior author Dr. Badri Roysam, professor of electrical and computer engineering at the University of Houston. "It is essentially the combination of a supermicroscope and a supercomputer to screen cell-cell interactions on a large scale. The proposed algorithms dramatically improved the yield and accuracy of the automated analysis to a level at which the automatically generated cellular measurements can be utilized for biological studies directly, with little/no editing."

Related Links:

University of Houston
University of Texas M.D. Anderson Cancer Center



New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.