We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Membrane-Bound Enzyme Linked to Plaque Formation in Mouse Atherosclerosis Model

By LabMedica International staff writers
Posted on 21 Jul 2015
Print article
Image: Results presented in this study suggest that the enzyme CD39 can suppress the plaque buildup that may trigger heart attack or stroke (Photo courtesy of the University of Michigan).
Image: Results presented in this study suggest that the enzyme CD39 can suppress the plaque buildup that may trigger heart attack or stroke (Photo courtesy of the University of Michigan).
Cardiac disease researchers working with a mouse model of atherosclerosis have found that that a specific membrane bound enzyme has the potential to inhibit build-up of plaque and reduce risk of heart attack or stroke.

Investigators at the University of Michigan (Ann Arbor, USA) worked with the apolipoprotein E-deficient (ApoE-deficient) mouse model of atherosclerosis to examine the role of the enzyme CD39 (ectonucleotide tri(di)phosphohydrolase-1 or ENTPD1) in the process of plaque formation. This enzyme metabolizes locally released, intravascular ATP and ADP, thereby eliminating these pro-thrombotic and pro-inflammatory signaling molecules.

The investigators reported in the June 29, 2015, online edition of the Journal of Clinical Investigation that when animals fed a high-fat diet were compared, it was seen that ApoE-deficient mice that also lacked CD39 had a plaque burden that was markedly increased along with circulating markers of platelet activation. CD39 was prominently expressed in stable blood flow regions and was diminished in areas subjected to disturbed flow. Thus, CD39 activation followed the pattern of plaque formation.

In mice, disturbed blood flow as the result of partial carotid artery ligation rapidly suppressed endothelial CD39 expression. Moreover, unidirectional laminar shear stress induced protective CD39 expression in human endothelial cells.

“Better lifestyles and improved treatments have slowed the rates of death from atherosclerosis, but if CD39 proves to be as critical a factor in humans as in mice, it would be a major step forward in understanding heart disease,” said senior author Dr. David Pinsky, professor of cardiology at the University of Michigan.

Related Links:

University of Michigan


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.