Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Two Secreted Proteins Prepare Breast Cancer Cells for Metastasis

By LabMedica International staff writers
Posted on 21 Apr 2015
Two genes that code for secreted proteins have been found to be responsible for the development of vascular mimicry—imitation blood vessels—by tumor cells and for preparing some tumor cell clones to spread away from the site of the primary tumor.

Investigators at Cold Spring Harbor Laboratory (NY, USA) and colleagues at the University of Cambridge (United Kingdom) studied the two genes, SERPINE2 (serpin peptidase inhibitor, clade E) and SLPI (secretory leukocyte peptidase inhibitor), in a polyclonal mouse breast tumor model.

The SERPINE 2 gene encodes a member of the serpin family of proteins, a group of proteins that inhibit serine proteases. Thrombin, urokinase, plasmin, and trypsin are among the proteases that this family member can inhibit. This gene is a susceptibility gene for chronic obstructive pulmonary disease and for emphysema. The SLPI gene encodes a secreted inhibitor which protects epithelial tissues from serine proteases. It is found in various secretions including seminal plasma, cervical mucus, and bronchial secretions, and has affinity for trypsin, leukocyte elastase, and cathepsin G. Its inhibitory effect contributes to the immune response by protecting epithelial surfaces from attack by endogenous proteolytic enzymes; the protein is also thought to have broad-spectrum antibiotic activity.

The investigators found that breast tumors in their mouse model comprised distinct clones whose component cells specialized in various functions such as dominating the primary tumor, contributing to metastatic populations, or showing tropism for entering the lymphatic or vasculature systems. The investigators were able to correlate these stable properties with distinct gene expression profiles. Those clones that efficiently entered the vasculature expressed the two secreted proteins, Serpine2 and Slpi, which were necessary and sufficient to program these cells for vascular mimicry. The data, which was published in the April 8, 2015, online edition of the journal Nature, indicated that these proteins not only drove the formation of extravascular networks but also ensured their perfusion by acting as anticoagulants.

The investigators proposed that vascular mimicry supported the ability of some breast tumor cells to contribute to distant metastases while simultaneously satisfying a critical need of the primary tumor to be fed by the vasculature. Enforced expression of SERPINE2 and SLPI in human breast cancer cell lines also programmed them for vascular mimicry, and SERPINE2 and SLPI were overexpressed preferentially in human patients that had lung-metastatic relapse. Thus, these two secreted proteins, and the phenotype they promote, may be broadly relevant as drivers of metastatic progression in human cancer.

"It is very neat to watch and see cells evolve to have these capacities," said senior author Dr. Simon Knott, research professor at Cold Spring Harbor Laboratory. "But on the other hand it is really scary to think that these cells are sitting there in people doing this. Targeting them might provide therapeutic benefits, but we are not sure yet."

Related Links:

Cold Spring Harbor Laboratory
University of Cambridge



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.