We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Blocking Nerve Growth Factor Receptor Enables Human Nervous System Regeneration

By LabMedica International staff writers
Posted on 20 Aug 2014
The mystery of why the human nervous system is unable to regenerate may have been at least partially solved with the identification of a protein called p75 that seems to block the repair of damaged nerve cells.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) explained that the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, was required as a co-receptor for the Nogo receptor (NgR - reticulon 4 receptor) to mediate the activity of regeneration inhibitors such as Nogo. More...
The Nogo receptor mediates axonal growth inhibition and may play a role in regulating axonal regeneration and plasticity in the adult central nervous system.

p75, also called nerve growth factor receptor, contains an extracellular domain containing four 40-amino acid repeats with six cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155-amino acid cytoplasmic domain. The cysteine-rich region contains the nerve growth factor binding domain.

In the current study, the investigators used a protein, p45, known to stimulate nervous system regeneration in lower animals but lacking in humans. They found that when added to cultures of human neurons, p45 markedly interfered with the function of p75 as a co-receptor for NgR. p45 bound p75 through both its transmembrane (TM) domain and death domain (DD).

To understand the underlying mechanisms, they determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. They identified the residues involved in this interaction by NMR and co-immunoprecipitation.

Results of these structural and functional studies published in the August 5, 2014, online edition of the journal PLOS Biology revealed that p45 bound specifically to conserved regions in the p75 transmembrane domain and in the intracellular domain and that this binding blocked p75 dimerization along with its downstream signaling. Blocking the activity of p75 allowed nervous tissue to regenerate.

“This research implies that we might be able to mimic neuronal repair processes that occur naturally in lower animals, which would be very exciting,” said senior author Dr. Kuo-Fen Lee, professor of molecular neurobiology at the Salk Institute for Biological Studies. “We do not know why this nerve regeneration does not occur in humans. We can speculate that the brain has so many neural connections that this regeneration is not absolutely necessary.”

Related Links:

Salk Institute for Biological Studies



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.