We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Barth Syndrome Stem Cells Reveal Details of a Rare Heart Defect

By LabMedica International staff writers
Posted on 27 May 2014
Skin cells taken from Barth syndrome patients were used to generate stem cells that differentiated into defective heart tissue in culture.

Barth syndrome (type II 3-Methylglutaconic aciduria) is caused by mutation of the tafazzin gene. More...
Tafazzin is responsible for remodeling of a phospholipid cardiolipin (CL), the signature lipid of the mitochondrial inner membrane. As a result, Barth syndrome patients exhibit defects in CL metabolism, including aberrant CL fatty acyl composition, accumulation of monolysocardiolipin (MLCL), and reduced total CL levels. About 120 cases of Barth syndrome, which is found exclusively in males, have been documented to date, but the syndrome is believed to be severely under-diagnosed and has been estimated to occur in one out of approximately 300,000 births.

Investigators at Harvard University (Cambridge, MA, USA) obtained skin cells from two Barth syndrome patients. The skin cells were induced to become stem cells carrying the patients’ TAZ mutations. The stem cells were cultured on chips lined with human extracellular matrix (ECM) proteins that mimicked their natural environment. Under these conditions the stem cells matured into a conglomerate of cardiomyocytes that mimicked heart tissue. Due to the presence of the TAZ mutations the heart tissue demonstrated very weak contractions, similar to a diseased human heart.

The investigators used this novel model system to define metabolic, structural, and functional abnormalities associated with TAZ mutation. They found that excess levels of reactive oxygen species (ROS) mechanistically linked TAZ mutation to impaired cardiomyocyte function. In addition, they used a gene therapy technique to provide the normal TAZ protein to the diseased tissue. Results published in the May 11, 2014, online edition of the journal Nature Medicine showed that inducing TAZ mutation in normal cardiomyocytes weakened contractions while addition of normal TAZ to the Barth syndrome cardiomyocytes corrected the contractile defect.

“The TAZ mutation makes Barth syndrome cells produce an excess amount of reactive oxygen species, or ROS—a normal byproduct of cellular metabolism released by mitochondria—which had not been recognized as an important part of this disease,” said senior author Dr. William Pu, associate professor of cardiology at Harvard University. “We showed that, at least in the laboratory, if you quench the excessive ROS production then you can restore contractile function. “Now, whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle.”

Related Links:

Harvard University



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.