We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Bacterial Persistence to Antibiotic Treatment Mediated by HipA Toxin Inhibition of Glutamyl-tRNA-Synthetase Activity

By LabMedica International staff writers
Posted on 06 Jan 2014
A team of molecular microbiologists has identified the molecular pathway that induces some types of "persistent" bacteria to enter a static or dormant phase when faced with antibiotic treatment.

Bacterial persistence or multidrug tolerance is caused by a small subpopulation of microbial cells termed persisters. More...
Persisters, which are the main cause for relapsing and chronic infections, are not mutants, but rather are dormant cells that can survive the antimicrobial treatments that kill the majority of their genetically identical siblings. Persister cells have entered a non- or extremely slow-growing physiological state, which makes them insensitive to the action of antimicrobial drugs. When such persisting microbial cells cannot be eliminated by the immune system, they become a reservoir from which recurrence of infection will develop.

In a recent study investigators at the Hebrew University of Jerusalem (Israel) searched for a molecular explanation for bacterial persistence by screening an expression library for putative targets of HipA, the first toxin linked to persistence. HipA belongs to a family of phosphatidylinositide and protein kinases and is capable of autophosphorylation. It causes inhibition of macromolecular synthesis, but the mechanism of action is unknown. Mutants of HipA lacking either predicted active-site residues or the site of autophosphorylation are defective in producing multidrug-tolerant cells.

The investigators reported in the December 17, 2013, online edition of the journal Nature Communications that GltX, the glutamyl-tRNA-synthetase, reversed the toxicity of HipA and prevented the development of persistent forms. GltX is a member of the enzyme family that catalyzes the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction.

Upon HipA expression, GltX activity was blocked, as the enzyme was phosphorylated at Ser239 (amino acid serine residue 239), its ATP-binding site. This phosphorylation led to accumulation of uncharged tRNA(Glu) in the cell, which resulted in the activation of the stringent response. The stringent response is a stress response of bacteria and plant chloroplasts in reaction to amino-acid starvation, fatty acid limitation, iron limitation, heat shock, and other stress conditions. The stringent response modulates transcription of up to one-third of all genes in the cell. This in turn causes the cell to divert resources away from growth and division and toward amino acid synthesis in order to promote survival until nutrient conditions improve.

The investigators stated that, "Our findings demonstrate a mechanism for persister formation by the hipBA toxin-antitoxin module and provide an explanation for the long-observed connection between persistence and the stringent response."

Related Links:

Hebrew University of Jerusalem



Gold Member
Serological Pipets
INTEGRA Serological Pipets
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
Specimen Radiography System
TrueView 200 Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.