We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Computational Modeling Yields Potential Anti-Adenovirus Drugs

By LabMedica International staff writers
Posted on 15 Jul 2013
Advanced computational modeling was used to identify drug candidates capable of preventing replication of all serotypes of adenovirus.

Adenovirus infections most commonly cause diseases of the respiratory system. More...
However, depending on the infecting serotype, they may also cause various other illnesses and presentations including gastroenteritis, conjunctivitis, cystitis, and rash illness. Respiratory diseases caused by adenovirus infection range from the common cold syndrome to pneumonia, croup, and bronchitis. Patients with compromised immune systems are especially susceptible to severe complications of adenovirus infection. As more than 50 distinct adenovirus serotypes have been identified, researchers doubt that it will be possible to develop a successful vaccine.

Instead, investigators at the Brookhaven National Laboratory (Upton, NY, USA) searched for compounds able to block the action of the adenovirus proteinase (AVP), an enzyme required by all serotypes during the process of replication within a host cell.

The investigators employed a process called "docking" to screen a library of more than 140,000 potential drugs. Docking—the computational simulation of a candidate ligand binding to a receptor—is a method that predicts the preferred orientation of one molecule to a second when bound to each other to form a stable complex. Knowledge of the preferred orientation in turn may be used to predict the strength of association or binding affinity between two molecules. Docking is frequently used to predict the binding orientation of small molecule drug candidates to their protein targets in order to in turn predict the affinity and activity of the small molecule. Given the biological and pharmaceutical significance of molecular docking, considerable efforts have been directed towards improving the methods used to predict docking.

The AVP docking study, which was published in the May 24, 2013, online edition of the journal FEBS Letters, yielded 30 compounds able to block AVP. Further experiments showed that two of these compounds could inhibit AVP and prevent viral replication at clinically relevant concentrations. The two molecules are too large to be used as clinical drugs, so the next stage of the research effort will be to reduce their size during development of second-generation compounds based upon their binding segments.

"The adenovirus proteinase is an enzyme conserved throughout all strains of the virus that cleaves proteins during the assembly of new virus particles," said senior author Dr. Walter Mangel, a biologist at the Brookhaven National Laboratory. "Once those proteins are cleaved, the newly synthesized virus particle is infectious. If those proteins are not cleaved, then the infection is aborted. Thus, inhibitors of the adenovirus proteinase should be effective antiviral agents against all strains of adenovirus."

"This research is a great example of the potential for rational drug design," said Dr. Mangel. "Based on studies of the atomic-level structure of an enzyme that is essential for the maturation of adenovirus and how that enzyme becomes active—conducted at Brookhaven's National Synchrotron Light Source (NSLS)—we used computational modeling to search for compounds that might interfere with this enzyme and tested the best candidates in the lab. This work should pave the way for the development of effective drugs against all types of adenovirus infections."

Related Links:
Brookhaven National Laboratory


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
Hemodynamic System Monitor
OptoMonitor
New
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.