We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Tracing Technique Untangles Brain Circuit Networks

By LabMedica International staff writers
Posted on 09 Jul 2013
High-resolution mapping has uncovered the architecture of neural circuits leading to the basal ganglia, which could promote research into disorders such as Parkinson’s disease (PD) and Huntington’s disease.

Researchers at the Gladstone Institutes (San Francisco, CA, USA) and the Salk Institute (San Diego, CA, USA) combined mouse models with a sophisticated tracing technique, known as the monosynaptic rabies virus (MRV) system, to assemble brain-wide maps of the striatum of neurons that connect with the basal ganglia, integrating information from multiple brain regions to shape motor learning. More...
The two major projection cell types in the striatum target different downstream basal ganglia targets and have opposing effects on motivated behavior, yet differential innervation of these neuronal subtypes is not well understood.

To examine whether input specificity provides a basis for information segregation, the researchers used a MRV system to generate brain-wide maps of neurons that form synapses with direct- or indirect-pathway striatal projection neurons. They found that sensory cortical and limbic structures mostly innervated the direct pathway, whereas motor cortex structures preferentially targeted the indirect pathway. The researchers also found that thalamostriatal input, dopaminergic input, and input from specific cortical layers were similar in both pathways. The study was published on June 26, 2013, in Neuron.

“Taming and harnessing the rabies virus is ingenious in the exquisite precision that it offers compared with previous methods, which were messier with a much lower resolution,” said study coauthor Anatol Kreitzer, PhD, of the Gladstone Institutes. “We took the approach one step further by activating the tracer genetically, which ensures that it is only turned on in specific neurons in the basal ganglia. This is a huge leap forward technologically, as we can be sure that we’re following only the networks that connect to particular kinds of cells in the basal ganglia.”

“These initial results should be treated as a resource not only for decoding how this network guides the vast array of very distinct brain functions, but also how dysfunctions in different parts of this network can lead to different neurological conditions,” added coauthor Edward Callaway, PhD, of the Salk Institute. “If we can use the rabies virus system to pinpoint distinct network disruptions in distinct types of disease, we could significantly improve our understanding of these diseases’ underlying molecular mechanisms and get even closer to developing solutions for them.”

The MRV system, originally developed in 2007 and refined by Dr. Callaway and other researchers for targeting specific cell types in 2010, uses a modified version of the rabies virus to “infect” a brain region, which in turn targets and infects neurons that are connected to it. When the system was applied in genetic mouse models, the team could see specifically how sensory, motor, and reward structures in the brain connected to medium spiny neurons (MSNs) in the basal ganglia.

Related Links:

Gladstone Institutes
Salk Institute



Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Gold Member
Collection and Transport System
PurSafe Plus®
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.