We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Therapy Increases Survival in Huntington's Disease Animal Models

By LabMedica International staff writers
Posted on 27 Jun 2013
Gene therapy that suppressed formation of glial cells while promoting growth of neurons in the adult brain slowed development of neurodegenerative Huntington's disease in animal models.

Huntington’s disease (HD) is caused by a dominant gene that encodes the huntingtin protein. More...
The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between 7 and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down into toxic peptides, which cause the loss of a type of brain cell called striatopallidal medium spiny projection neurons (MSNs). Destruction of these cells causes involuntary movements, problems with coordination, and, ultimately, in cognitive decline and depression. There is currently no treatment for this fatal disease.

Investigators at the University of Rochester Medical Center (NY, USA) and their colleagues at the University of Iowa (Iowa City, USA) initially worked with a Huntington's disease mouse model. They injected these animals with adeno-associated viruses (AAVs) modified to deliver the genes for the proteins BDNF (brain derived neurotrophic factor) or noggin. BDNF stimulates neural stem cells to produce neurons, while noggin inhibits the molecular pathway that induces formation of glial cells.

Results reported in the June 6, 2013, issue of the journal Cell Stem Cell revealed that a single injection of the adeno-associated viruses AAV4-BDNF and AAV4-noggin triggered the sustained recruitment of new MSNs in wild-type and R6/2 mice, a Huntington's disease model. Mice treated with AAV4-BDNF/noggin or with BDNF and noggin proteins actively recruited progenitor cells to form new MSNs that matured and achieved circuit integration. The AAV4-BDNF/noggin-treated R6/2 mice showed delayed deterioration of motor function and substantially increased survival.

In a follow-up set of experiments, squirrel monkeys that were given injections of adenoviral BDNF/noggin showed similar addition of striatal neurons.

"This study demonstrates the feasibility of a completely new concept to treat Huntington's disease, by recruiting the brain's endogenous neural stem cells to regenerate cells lost to the disease," said senior author Dr. Steve Goldman, professor of neurology at the University of Rochester Medical Center. "The sustained delivery of BDNF and noggin into the adult brain was clearly associated with both increased neurogenesis and delayed disease progression. We believe that our data suggest the feasibility of this process as a viable therapeutic strategy for Huntington's disease."

Related Links:
University of Rochester Medical Center
University of Iowa



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.