We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mechanism Identified That Allows Cancer Cells to Survive Metabolic Stress and Chemotherapy

By LabMedica International staff writers
Posted on 05 Jun 2013
Print article
Image: Senior author Dr. Beverly M. Emerson (back right) and first author Dr. Fernando Lopez-Diaz (Photo courtesy if the Salk Institute for Biological Studies).
Image: Senior author Dr. Beverly M. Emerson (back right) and first author Dr. Fernando Lopez-Diaz (Photo courtesy if the Salk Institute for Biological Studies).
Image: Shown in brown, the activation of TGF-beta signaling (left) and p53 levels (right) in a breast biopsy from a patient diagnosed with ductal carcinoma in situ and invasive carcinoma. TGF-beta-1 deactivates the main pathway directing the response to chemotherapeutic drugs and cellular stress, suggesting a potential new therapy to prevent early stages cancers progression and drug resistance (Photo courtesy of the Salk Institute for Biological Studies).
Image: Shown in brown, the activation of TGF-beta signaling (left) and p53 levels (right) in a breast biopsy from a patient diagnosed with ductal carcinoma in situ and invasive carcinoma. TGF-beta-1 deactivates the main pathway directing the response to chemotherapeutic drugs and cellular stress, suggesting a potential new therapy to prevent early stages cancers progression and drug resistance (Photo courtesy of the Salk Institute for Biological Studies).
The ability of cancer cells to withstand both the metabolic stress of uncontrolled growth and that caused by chemotherapy depends on the action of transforming growth factor-beta (TGF-beta), which prevents apoptosis by blocking p53 tumor suppressor signaling.

TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of cancer development. However, when a cell is transformed into a cancer cell, parts of the TGF-beta signaling pathway are mutated, and TGF-beta no longer controls the cell. These cancer cells and surrounding stromal cells (fibroblasts) begin to proliferate. Both types of cell increase their production of TGF-beta. This TGF-beta acts on the surrounding stromal cells, immune cells, endothelial, and smooth-muscle cells causing immunosuppression and angiogenesis, which makes the cancer more invasive.

Investigators at the Salk Institute of Biological Studies (La Jolla, CA, USA) examined premalignant as well as cancer cells from breast and lung tumors and matched normal breast cells from healthy women. They reported in the May 23, 2013, issue of the journal Molecular Cell that in about half of the breast tumors, including premalignant lesions, when TGF-beta signaling was highly activated, the levels of p53 were reduced, and vice versa—if the TGF-beta pathway was reduced, there were high levels of p53.

"Not all premalignant cells morph into cancer," said senior author Dr. Beverly M. Emerson, professor of regulatory biology at the Salk Institute of Biological Studies. "Many self-destruct due to cellular protective mechanisms. But some will become tumors and, at this point, there is no way to predict which of these cells are a risk."

"Our work suggests it might be possible to halt cancer development in premalignant cells—those that are just a few divisions away from being normal," said first author Dr. Fernando Lopez-Diaz, a researcher in the regulatory biology laboratory at the Salk Institute for Biological Studies.

"Agents designed to inhibit TGF-beta are already being tested against cancers that have already spread," said Dr. Emerson. "This study offers both significant insights into early cancer development and a new direction to explore in cancer treatment. It would be fantastic if a single agent could shut down both advanced cancer and cancer that is primed to develop."

Related Links:

Salk Institute of Biological Studies


Platinum Supplier
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Gold Supplier
Melanoma Panel
UltraSEEK Melanoma Panel
New
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
3-Part Automatic Hematology Analyzer
BC-30

Print article

Channels

Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more

Molecular Diagnostics

view channel
Image: A new blood test can improve diagnosis for patients with a heart muscle injury (Photo courtesy of 123RF)

High Sensitivity Blood Test Aids Emergency Diagnosis of Heart Conditions

Troponin, a protein released into the bloodstream during heart attacks or other heart injuries, has long been a focal point in medical diagnostics. Traditionally, various troponin blood tests have aided... Read more

Hematology

view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more

Immunology

view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more

Microbiology

view channel
Image: Current testing methods for antibiotic susceptibility rely on growing bacterial colonies in the presence of antibiotics (Photo courtesy of 123RF)

Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1.3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating... Read more

Pathology

view channel
Image: AI methods used in satellite imaging can help researchers analyze tumor images (Photo courtesy of Karolinska Institutet)

AI Approach Combines Satellite Imaging and Ecology Techniques for Analysis of Tumor Tissue

Advancements in tumor imaging technology have significantly enhanced our ability to observe the minute details of tumors, but this also brings the challenge of interpreting vast amounts of data generated... Read more

Technology

view channel
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)

Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop

With the global increase in life expectancy, the incidence of age-related conditions like osteoporosis is increasing. Osteoporosis, affecting around 200 million individuals worldwide, has a higher incidence... Read more

Industry

view channel
Image: The acquisition significantly expands Medix Biochemica’s portfolio of IVD raw materials (Photo courtesy of ViroStat)

Medix Biochemica Acquires US-Based ViroStat to Expand Infectious Diseases Antibody Offering

Medix Biochemica (Espoo, Finland), a supplier of critical raw materials to the in vitro diagnostics (IVD) industry, has acquired ViroStat LLC (Portland, ME, USA), a provider of infectious disease antibodies... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.