Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Eight Previously Unknown Wound Response Genes Discovered

By LabMedica International staff writers
Posted on 09 May 2013
Researchers working with a fruit fly (Drosophila) embryo model system for the study of wound healing have identified eight additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair.

Investigators at the University of California, San Diego (USA) sought to establish a broader understanding of the genome-wide transcriptional response at different time points in the epidermis around clean puncture wounds. More...
To do this they developed a protocol using Drosophila embryos that took advantage of trypsin-mediated wounding in conjunction with microarray technology to determine changes in the genes expressed by wounded embryos.

Trypsin is a member of the serine protease family of enzymes that cleaves peptide bonds in proteins, in which serine serves as the nucleophilic amino acid at the enzyme's active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like. In humans, they are responsible for coordinating various physiological functions, including digestion, immune response, blood coagulation, and reproduction.

Results published in the April 24, 2013, online edition of the journal PLOS ONE revealed that by comparing results from microarray analyses of wounded Drosophila embryos with similar results on mammalian skin wounding, it was possible to see which evolutionarily conserved pathways were activated after epidermal wounding in very diverse animals. The innovative trypsin-mediated wounding protocol developed for this study enabled the identification of eight additional genes that were activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggested novel genetic pathways that may control epidermal wound repair. Additionally, the data augmented the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues.

"Many of the key molecules and proteins involved in Drosophila wound healing are involved in mammalian wound healing," said first author Rachel Patterson, graduate student in cell and developmental biology at the University of California, San Diego. "The genetics of Drosophila are not as complicated as mammalian genetics, so it is easier to attribute specific biological functions to individual genes. Perhaps our results can be translated to existing human therapies by incorporating specific, regulated serine proteases and antimicrobial peptides at the sites of diabetic ulcers or skin grafts for more efficient wound healing. Our results might also have application to treating chronic skin diseases such as psoriasis, severe dry skin, and eczema in which levels of these enzymes are known to be abnormal."

Related Links:
University of California, San Diego



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.