We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




fMRI Scanning of Biomarker Predicts Response to Rapid Antidepressant Agent

By LabMedica International staff writers
Posted on 12 Feb 2013
A characteristic jump in activity in the back of the brain while processing emotional data has been shown to predict which depressed patients would respond to an investigational rapid-acting antidepressant agent.

US researchers reported new research on functional magnetic resonance imaging (fMRI) of a pretreatment biomarker for the antidepressant response to scopolamine, and the study’s findings were published January 30, 2013, online in JAMA Psychiatry. More...
“We have discovered a potential neuroimaging biomarker that may eventually help to personalize treatment selection by revealing brain-based differences between patients,” explained Maura Furey, PhD, of US National Institutes of Health’s National Institute of Mental Health (NIMH; Bethesda, MD, USA).

Scopolamine, typically recognized as a treatment for motion sickness, has been researched since Dr. Furey and colleagues discovered its fast-acting antidepressant properties in 2006. Dissimilar to ketamine, scopolamine works through the brain’s acetylcholine chemical messenger system. The NIMH scientists’ research has shown that by suppressing receptors for acetylcholine on neurons, scopolamine can lift depression in many patients within a few days; conventional antidepressants typically take weeks to work. But not all patients respond, prompting interest in a predictive biomarker.

The acetylcholine system plays a key role in working memory, retaining information in the mind temporarily, but appears to act by influencing the processing of data instead of through memory. fMRI scanning studies suggest that visual working memory performance can be enhanced by modulating acetylcholine-induced activity in the brain’s visual processing region, called the visual cortex, when processing information that is vital to the task. Because functional memory performance can predict response to traditional antidepressants and ketamine, Dr. Furey and coworkers looked at a working memory task and imaging visual cortex activity as potential tools to identify a biomarker for scopolamine response.

Depressed patients have a well-known tendency to process and remember negative emotional information. The researchers suggest that this bias stems from dysregulated acetylcholine systems in some patients. They rationalized that such patients would show abnormal visual cortex activity in response to negative emotional features of a working memory task. They also expected to find that patients with more dysfunctional acetylcholine systems would respond better to scopolamine treatment.

Before receiving scopolamine, participants performed a working memory task while their brain activity was monitored via fMRI. For some trials, it required that they pay attention to, and remember, the emotional expression (i.e., happy, sad) of faces flashing on a computer monitor. For other studies, they had to pay attention to only the identity, or non-emotional feature, of the faces. After scanning, and over the following several weeks, 15 patients with depression and 21 healthy participants randomly received infusions of a placebo (salt solution) and/or scopolamine. Mood changes were tracked with depression rating scales.

Overall, scopolamine treatment reduced depression symptoms by 63%, with 11 of the patients showing a significant clinical response. The strength of this response correlated considerably with visual cortex activity during key phases of the working memory task--while participants were paying attention to the emotional content of the faces. There was no such correlation for trials when they attended to the facial identity.

The evidence suggests that acetylcholine system activity triggers visual cortex activity that predicts treatment response—and that dissimilarities seen between depressed patients and controls may be traceable to acetylcholine dysfunction. Overall, patients showed lower visual cortex activity than controls during the emotion phase of the task. Patients demonstrating activity levels most unlike the control subjects experienced the greatest antidepressant response to scopolamine treatment. Visual cortex activity in patients who did not respond to scopolamine more closely resembled that of the controls. As theorized, the pretreatment level of visual cortex activity seems to reflect the extent of patients’ acetylcholine system dysfunction and to predict their response to the investigational medication, according to the researchers.

Early findings suggest that such visual cortex activity in response to emotional stimuli may also apply to other treatments and may prove to be a shared biomarker of rapid antidepressant response, according to Dr. Furey.

Related Links:
National Institute of Mental Health


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
Urine Chemistry Control
Dropper Urine Chemistry Control
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.