We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Synchrotron X-Ray Crystallography Generates Insulin-Insulin Receptor Binding Images

By LabMedica International staff writers
Posted on 24 Jan 2013
The light generated by a state-of-the-art particle accelerator was used to capture X-ray crystallographic images of the three-dimensional interaction between insulin and its receptor.

Insulin receptor signaling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation, and survival. More...
Insulin resistance contributes to the development of diseases such as type II diabetes mellitus and Alzheimer’s disease. Abnormal signaling generated by cross talk with the homologous type 1 insulin-like growth factor receptor (IGF1R) occurs in various cancers. Despite more than thirty years of research, it has not been possible to document the three-dimensional structure of the insulin-insulin receptor due to the complexity of producing the receptor protein.

In a paper published in the January 9, 2013, online edition of the journal Nature an international research time described the use of the Australian Synchrotron to capture the three-dimensional structure of insulin bound to the insulin receptor.

The Australian Synchrotron (Clayton, Australia) is a light source facility that uses particle accelerators to produce a beam of high-energy electrons that are placed within a storage ring that circulates the electrons to create synchrotron light. The electron beams travel at just under the speed of light - about 299,792 kilometers per second, and the intense light they produce is filtered and adjusted to travel down separate beamlines to separate end stations where are placed a variety of experimental equipment including one for protein crystallography.

X-ray crystallographic images generated by the Synchrotron revealed the sparse direct interaction of insulin with the first leucine-rich-repeat domain (L1) of the insulin receptor. Instead, the hormone engaged the insulin receptor carboxy-terminal alpha-chain (alphaCT) segment, which was itself remodeled on the face of L1 upon insulin binding. Contact between insulin and L1 was restricted to insulin B-chain residues. The alphaCT segment displaced the B-chain C-terminal beta-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is thought to be novel within the broader family of receptor tyrosine kinases.

"We have now found that the insulin hormone engages its receptor in a very unusual way," said senior author Dr. Michael C. Lawrence, associate professor of structural biology at Walter and Eliza Hall Institute of Medical Research (Melbourne, Australia). "Both insulin and its receptor undergo rearrangement as they interact - a piece of insulin folds out and key pieces within the receptor move to engage the insulin hormone."

"Understanding how insulin interacts with the insulin receptor is fundamental to the development of novel insulins for the treatment of diabetes," said Dr. Lawrence. "Until now we have not been able to see how these molecules interact with cells. We can now exploit this knowledge to design new insulin medications with improved properties, which is very exciting. Insulin is a key treatment for diabetics, but there are many ways that its properties could potentially be improved. This discovery could conceivably lead to new types of insulin that could be given in ways other than injection, or an insulin that has improved properties or longer activity so that it does not need to be taken as often. It may also have ramifications for diabetes treatment in developing nations, by creating insulin that is more stable and less likely to degrade when not kept cold, an angle being pursued by our collaborators. Our findings are a new platform for developing these kinds of medications."

Related Links:
Australian Synchrotron
Walter and Eliza Hall Institute of Medical Research



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.