Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Incorporating a Biologic Nanopore into a Synthetic One Offers New Ways to Analyze DNA

By LabMedica International staff writers
Posted on 22 Dec 2010
Researchers reported a new kind of nanopore device that could help in developing fast and inexpensive genetic analysis. More...
The innovative method that combines synthetic and biologic materials to result in a tiny hole on a chip is able to measure and analyze single DNA molecules.

The investigators involved on the project were from Delft University of Technology (The Netherlands) and Oxford University (UK). "The first mapping of the human genome where the content of the human DNA was read off was completed in 2003 and it cost an estimated 3 billion US dollars. Imagine if that cost could drop to a level of a few 100 euro, where everyone could have their own personal genome sequenced. That would allow doctors to diagnose diseases and treat them before any symptoms arise,” Prof. Cees Dekker of the Kavli Institute of Nanoscience at Delft explained.

One promising device is called a nanopore: a minute hole that can be used to ‘read' data from a single molecule of DNA as it threads through the hole. New research by Dr. Dekker's group in collaboration with Prof. Hagan Bayley of Oxford University, has now demonstrated a new, much more robust type of nanopore device. It combines biologic and artificial building blocks.

Dr. Dekker noted, "Nanopores are already used for DNA analysis by inserting naturally occurring, pore-forming proteins into a liquid-like membrane made of lipids. DNA molecules can be pulled individually through the pore by applying an electrical voltage across it, and analyzed. One feature that makes this biologic technology especially difficult, however, is the reliance on the fragile lipid support layer. This new hybrid approach is much more robust and suitable to integrate nanopores into devices.

The new research, performed mainly by lead author Dr. Adam Hall, is a simple technique that involves implanting the pore-forming proteins into a robust layer in a silicon chip. Essentially, an individual protein is attached to a larger piece of DNA, which is then pulled through a premade opening in a silicon nitride membrane.

When the DNA molecule threads through the hole, it pulls the pore-forming protein behind it, ultimately lodging it in the opening and creating a strong, chip-based system that is custom-made for arrays and device applications. The researchers have shown that the hybrid device is fully functional and can be used to detect DNA molecules.

The scientists published their findings in the November 28, 2010, issue of the journal Nature Nanotechnology.

Related Links:

Delft University of Technology
Oxford University




New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.