We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Process Reveals How Key Enzyme Repairs Sun-Damaged DNA

By LabMedica International staff writers
Posted on 25 Aug 2010
Researchers long known that humans lack a key enzyme--one possessed by most animals and even plants--that reverses severe sun damage. More...
For the first time, researchers have observed how this enzyme works at the atomic level to repair sun-damaged DNA.

In July 2010, in the early online edition of the journal Nature, Ohio State University (Columbus, USA) physicist and chemist Dr. Dongping Zhong and his colleagues reported how they were able to see the enzyme, called photolyase, inject a single electron and proton into an injured strand of DNA. The two subatomic particles healed the damage in a few billionths of a second. "It sounds simple, but those two atomic particles actually initiated a very complex series of chemical reactions,” said Dr. Zhong, an associate professor of physics, and associate professor in the departments of chemistry and biochemistry at Ohio State. "It all happened very fast, and the timing had to be just right.”

Precisely how photolyases repair the damage has remained a mystery until now. "People have been working on this for years, but now that we've seen it, I don't think anyone could have guessed exactly what was happening,” Dr. Zhong said. He and his colleagues synthesized DNA in the lab and exposed it to ultraviolet light, producing damage similar to that of sunburn, then added photolyase enzymes. Utilizing ultrafast light pulses, they took a series of "snapshots” to reveal how the enzyme repaired the DNA at the atomic level.

Ultraviolet (UV) light damages skin by causing chemical bonds to form in the wrong places along the DNA molecules in our cells. This research has demonstrated that photolyase breaks up those errant bonds in just the right regions to cause the atoms in the DNA to move back into their original positions. The bonds are then arranged in such a manner that the electron and proton are automatically ejected out of the DNA helix and back into the photolyase, presumably so it could start the cycle over again and go on to heal other sites.

All plants and most animals have photolyase to repair severe sun damage. Only mammals lack the enzyme. Humans do possess some enzymes that can undo damage with less efficiency. But people become sunburned when the DNA is too damaged for those enzymes to repair, and our skin cells die.

Now that researchers know the process by which photolyase works, they might use that information to engineer drugs or lotions that heal sun damage, according to Dr. Zhong.

Related Links:
Ohio State University



Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Gold Member
Rapid AKI Test
Acute Kidney Injury (AKI) Array (4-plex)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.