We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Blood Vessels Grown in Lab to Treat Heart Disease

By LabMedica International staff writers
Posted on 02 Sep 2009
Although open-heart surgery is a frequent treatment for heart disease, it remains a very dangerous procedure. More...
New research from Israel has shown the potential for an injected protein to regrow blood vessels in the human heart--eliminating the need for risky surgery altogether.

In heart disease, either blood vessels are clogged or they die off, starving the heart of oxygen and leaving it highly susceptible to a cardiac attack. Dr. Britta Hardy and her research partner Prof. Alexander Battler, from Tel Aviv University's Sackler School of Medicine (Israel) have developed a protein-based injection that when delivered to muscles in the body, spurs the growth of tiny blood vessels. These new vessels in the heart could give millions of people worldwide a new lease on life.

An article on the procedure was published in the August 10, 2009, issue of the journal Biochemical Pharmacology. "The biotechnology behind our human-based protein therapy is very complicated, but the goal is simple and the solution is straightforward,” stated Dr. Hardy. "We intend to inject our drug locally to heal any oxygen-starved tissue. So far, in animal models, we have seen no side effects and no inflammation following our injection of the drug into the legs. The growth of new blood vessels happens within a few weeks, showing improved blood circulation.”

The protein solution can also be added as a coating to a stent. Currently, the implantation of a stent is accompanied by a high risk for blood clots, which necessitates the use of blood thinners. "We could coat a stent with our peptide, attracting endothelial stem cells to form a film on the surface of the stent,” Dr. Hardy explained. "These endothelial cells on the stent would eliminate the need for taking the blood thinners that prevent blood clots from forming.”

If investment goals are met, Dr. Hardy anticipates toxicity studies and phase I trials could be complete within two years. The research began with the hope of preventing leg amputations, positing that proteins from the human body could be used to trigger the growth of new blood vessels. Dr. Hardy started by studying a library of peptides and testing them in the laboratory. Dr. Hardy was able to validate initial results. She then took some of the isolated and synthesized peptides and tested them in diabetic mice whose legs were in the process of dying.

Although diabetes is known to decrease blood circulation, Dr. Hardy found that her therapy reversed the decrease. "Within a short time we saw the formation of capillaries and tiny blood vessels. After three weeks, they had grown and merged together with the rest of the circulatory system,” she commented. In mice with limited blood circulation, she was able to completely restore blood vessels and save their legs. The next step is examining the applicability of the research to cardiac patients.

A new therapy could be commercially available soon. Unlike studies for other drugs, clinical results with the blood vessels are nearly immediate. "It's pretty obvious if there is regrowth or not. Our technology promises to regrow blood vessels like a net, and a heart that grows more blood vessels becomes stronger. It's now imaginable that, in the distant future, peptide injections may be able to replace bypass surgeries,” Dr. Hardy concluded.

Related Links:

Tel Aviv University's Sackler School of Medicine




Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
Human Estradiol Assay
Human Estradiol CLIA Kit
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.