We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Microarray Platform Demonstrates High Performance and Cost Effectiveness

By Biotechdaily staff writers
Posted on 01 Apr 2008
Print article
An objective comparison of tiling microarray array platforms using engineered DNA targets demonstrated their high performance and cost effectiveness.

The study organized by members of the Encyclopedia of DNA Elements consortium (ENCODE; Bethesda, MD, USA) at the University of North Carolina at Chapel Hill (Chapel Hill, NC, USA), the Dana-Farber Cancer Institute (Boston, MA, USA), and Stanford University (Stanford, CA, USA) evaluated DNA microarrays from Agilent (Santa Clara, CA, USA), Affymetrix (Santa Clara, CA, USA), and Nimblegen (Madison, WI, USA), which were used in seven independent laboratories.

The composition of the spike-in DNA in this study was engineered to mimic chromatin immunoprecipitation (ChIP) or copy-number amplification experiments across a wide dynamic range. To ensure a fair evaluation, the composition was not disclosed to participants. This made it possible to quantitatively evaluate each platform's sensitivity and specificity of detecting and quantifying a predefined standard without bias.

Platforms were compared using their highest possible tiling density. In evaluating results from comparable algorithms, Agilent consistently achieved the highest or equivalent scores, but did so with fewer probes, half as many replicates, and less sample DNA than either of the other platforms.

The study found that longer oligonucleotide (60-nt) microarrays, such as Agilent's, were more sensitive at detecting very low enrichment or copy number. Additionally, Agilent demonstrated the highest levels of sensitivity and specificity per probe, in some cases by orders of magnitude, over a range of simulated tiling densities.

"Agilent proved to be the most cost-effective of the long-oligo platforms over a wide range of tiling densities relevant to not only ChIP-on-chip assays but also to aCGH [array comparative genomic hybridization],” said Yvonne Linney, Ph.D., VP and general manager of Agilent's Genomics business. "The cost advantage is the result of our superior probe performance, which is due to the high quality of our SurePrint in situ oligonucleotide synthesis combined with our robust probe design algorithms. The bottom line is that the increased performance of Agilent's probes makes it possible to get more data with fewer features.”

The study was published in the journal Genome Research in March 2008.


Related Links:
Encyclopedia of DNA Elements consortium
University of North Carolina
Dana-Farber Cancer Institute
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.