We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Simple Blood Test Screens Pregnant Women for Serious Genetic Diseases in Fetuses

By LabMedica International staff writers
Posted on 05 Jan 2024

Currently, the first-generation Non-Invasive Prenatal Test (NIPT) is used widely to screen fetuses for common chromosomal disorders, mainly focusing on conditions like Down syndrome and other anomalies resulting from significant chromosomal changes. However, many congenital disorders stem from more subtle alterations in fetal DNA. To detect these, a comprehensive examination of all the genes in the fetal genome, known as exome sequencing, is necessary. Typically, this level of screening is reserved for pregnancies where ultrasound scans suggest abnormalities. This is due to the invasive nature of the required tests, such as chorionic villus sampling or amniocentesis, which are accompanied by discomfort and a slight risk of miscarriage. Consequently, many severe genetic conditions remain undetected until after birth. Now, an innovative test uses a blood sample from expectant mothers to analyze all the genes in the fetus, making it possible to screen pregnant women for serious genetic diseases in their unborn children.

The new test, named desNIPT, was developed by a research team from the University of Southern Denmark (Odense, Denmark) and has been proven capable of detecting mutations in fetal genes, which are often the root of serious congenital diseases. This new test builds upon the foundations of the first-generation NIPT, significantly enhancing its capabilities. Unlike traditional methods that require invasive procedures, desNIPT can be conducted with a simple blood draw from the pregnant woman, offering analysis before the child is born. This technique examines fetal DNA circulating in the mother's bloodstream, a breakthrough that has revolutionized the potential for prenatal disease screening in recent times. Even when the amount of fetal DNA present in the mother's blood is relatively low, the heightened sensitivity of the desNIPT test allows for the detection of genetic abnormalities in the fetus.

In a research study, 36 pregnant women were monitored, with blood samples collected during their first or second trimester. Each pregnancy had been flagged by ultrasound scans as potentially carrying a serious genetic disease in the fetus. From these 36 pregnancies, de novo disease-causing mutations were identified in 11 cases through the desNIPT analysis. The findings from desNIPT were then cross-referenced with results from traditional exome sequencing obtained via chorionic villus sampling or amniocentesis. The researchers found that the new method successfully detected all the disease-causing gene variants that were identified through the invasive prenatal tests, proving its efficacy. This innovative test paves the way for more comprehensive genetic screenings in the future, including the detection of conditions that might not be visible via ultrasound scans.

“We are highly optimistic as the study indicates that the desNIPT test is remarkably accurate. In the examined pregnant women, we did not observe any false-positive results,” said Martin Larsen, project leader and associate professor at the University of Southern Denmark. “Presently, our focus is on validating the test through a larger study, as well as refining and scaling the methodology.”

Related Links:
University of Southern Denmark

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.