We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Neurodevelopmental Disorders Diagnosed with RNA-Sequencing

By LabMedica International staff writers
Posted on 23 Jan 2020
Print article
Image: One year old boy with Cornelia de Lange syndrome (Photo courtesy of the University of Washington).
Image: One year old boy with Cornelia de Lange syndrome (Photo courtesy of the University of Washington).
Cornelia de Lange syndrome (CdLS) is a genetic disorder and people with this syndrome experience a range of physical, cognitive, and medical challenges ranging from mild to severe. The syndrome has a widely varied phenotype, meaning people with the syndrome have varied features and challenges.

The typical features of CdLS include thick or long eyebrows, a small nose, small stature, developmental delay, long or smooth philtrum, thin upper lip and downturned mouth. Neurodevelopmental disorders represent a frequent indication for clinical exome sequencing. Fifty percent of cases, however, remain undiagnosed even upon exome reanalysis.

Scientists at The Children’s Hospital of Philadelphia (Philadelphia, PA, USA) and their colleagues assessed Genotype–Tissue Expression project transcriptome data for human B-lymphoblastoid cell lines (LCL), blood, and brain for neurodevelopmental Mendelian gene expression. Detection of abnormal splicing and pathogenic variants in these genes was performed with a novel RNA-seq diagnostic pipeline and using a validation of 10 CdLS-LCL cohort and a test cohort of five patients who carry a clinical diagnosis of CdLS, but negative genetic testing.

The team reported that LCLs share isoform diversity of brain tissue for a large subset of neurodevelopmental genes and express 1.8-fold more of these genes compared with blood (LCL, n = 1,706; whole blood, n = 917). This enables testing of more than 1,000 genetic syndromes. The RNA-seq pipeline had 90% sensitivity for detecting pathogenic events and revealed novel diagnoses such as abnormal splice products in NIPBL and pathogenic coding variants in BRD4 and ANKRD11.

The investigators selected 10 LCLs from CdL syndrome patients with known pathogenic mutations in four genes and ran them through their transcriptome sequencing pipeline, restricting their analysis to 14 disease-causing genes. Overall, they were able to call nine of the 10 pathogenic variants, missing one nonsense variant, probably due to nonsense-mediated decay of the transcript. For one of the patients, they uncovered a mutation in a second gene, leading to an additional diagnosis with a syndrome that has overlapping clinical features with CdL syndrome.

The scientists tested their approach on five unsolved patient cases that had negative genetic testing and were suspected to have CdL syndrome or a related condition. For three of these, they obtained a genetic diagnosis, two abnormal splice events in NIPBL and one missense variant in BRD4. The BRD4 variant could have been detected by a DNA-based test, they noted, if the gene had been known at the time of the test. The authors concluded that the LCL transcriptome enables robust frontline and/or reflexive diagnostic testing for neurodevelopmental disorders. The study was published on January 8, 2020 in the journal Genetics in Medicine.

Related Links:
The Children’s Hospital of Philadelphia

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.