We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Leukemia Prematurely Ages Bone Marrow Cells

By LabMedica International staff writers
Posted on 20 Feb 2019
Print article
Image: A diagram of how leukemia NOX2 derived superoxide is a driver of pro-tumoral p16INK4a-dependent senescence in bone marrow stromal cells (Photo courtesy of University of East Anglia).
Image: A diagram of how leukemia NOX2 derived superoxide is a driver of pro-tumoral p16INK4a-dependent senescence in bone marrow stromal cells (Photo courtesy of University of East Anglia).
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with normal blood cells.

AML is an age-related disease that is highly dependent on the bone marrow microenvironment. With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of pro-inflammatory cytokines, chemokines and growth factors, collectively known as the senescence-associated secretory phenotype (SASP).

A large team of scientists led by those at the University of East Anglia (Norwich, UK) identified the mechanism by which the process of premature aging occurs in the bone marrow of leukemia patients and highlights the potential impact this could have on future treatments. They reported that the bone marrow stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feedback to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a-positive senescent bone marrow stromal cells in vivo improved the survival of mice with leukemia.

The team next found that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. NADPH oxidase (NOX2) is an enzyme usually involved in the body’s response to infection, was shown to be present in AML cells, and this was found to be responsible for creating the aging conditions. The team established that the NOX2 enzyme generates superoxide, which drives the aging process. Finally, using the p16-3MR mouse model, they showed that by targeting NOX2, they reduced BM stromal cell senescence and consequently reduced AML proliferation. The data identifies leukemia generated NOX2 derived superoxide as a driver of pro-tumoral p16INK4a-dependent senescence in bone marrow stromal cells.

Stuart A. Rushworth, PhD, the lead author of the study, said, “Our results provide evidence that cancer causes aging. We have clearly shown that the cancer cell itself drives the aging process in the neighboring noncancer cells. Our study reveals that leukemia uses this biological phenomenon to its advantage to accelerate the disease. It was not previously known that leukemia induces aging of the local noncancer environment. We hope that this biological function can be exploited in the future, paving the way for new drugs.” The study was published on January 31, 2019, in the journal Blood.

Related Links:
University of East Anglia

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.