We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Blood-Based Biomarker Assessed for Subtle Brain Injury

By LabMedica International staff writers
Posted on 10 May 2018
Print article
Image: The Simoa 2.0, ultrasensitive immunoassay platform used for measuring plasma tau and serum NfL (Photo courtesy of Quanterix).
Image: The Simoa 2.0, ultrasensitive immunoassay platform used for measuring plasma tau and serum NfL (Photo courtesy of Quanterix).
A high-sensitive blood test can aid concussed hockey players when it might be safe to return to play. The test has identified a superior blood-based biomarker for assessing subtle brain injury.

A study has compared neurofilament light (NfL) and tau as blood-based biomarkers for acute sports-related concussion (SRC) and determined whether their concentrations at different time points after the injury are associated with prolonged time to return to play (RTP).

Neuroscientists at the Sahlgrenska Academy (Gothenburg, Sweden) studied a total, 288 hockey players, which 105 suffered a concussion during three seasons from 2012 to 2015. From 87 of these players, blood samples were taken 1, 12, 36 and 144 hours (six days) after the concussion. A fifth sample was taken at the time when the person was determined fit to return to unrestricted competition.

Plasma tau and serum NfL were measured with a commercially available immunoassays using digital array technology. Samples for S100 calcium binding protein B (S100B) and neuron-specific enolase (NSE) were analyzed on a Modular E170 instrument. The limit of detection for the NfL assay is 0.29 pg/mL, which is approximately 100-fold more sensitive than conventional assay for the protein, while the limit of detection for tau is 0.02 pg/mL, which is over 1,000-fold more sensitive than conventional immunoassays for the protein.

The results show that it was the levels of the protein neurofilament light (NfL) that had the clearest connection to the severity of concussion, measured as the number of days it took for players to return to play. The levels of the other biomarkers that were studied (tau, S100B and, NSE) decreased quickly and could thereby not indicate how injured the players were after 7 to10 days, a time point many players returned to play in the study.

The authors concluded that serum NfL outperformed tau, S100B, and NSE as a biomarker for SRC. From a clinical standpoint, serum NfL may be useful to identify individuals at risk of prolonged PCS, and may aid in biomarker-informed decisions with regard to when RTP should be considered. Pashtun Shahim, MD, PhD, the lead author of the study, said, “The strength of this study is that we longitudinally followed how these biomarkers are released and cleared from the blood. What we observed was that NfL was released within an hour after the concussion, and then it increased over time in players who had prolonged symptoms.” The study was published on April 13, 2018, in the journal Neurology.

Related Links:
Sahlgrenska Academy

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.