We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Blood Test Developed to Catch Pancreatic Cancer Early

By LabMedica International staff writers
Posted on 08 Sep 2015
Print article
Image: The nCounter Analysis System (Photo courtesy of NanoString Technologies).
Image: The nCounter Analysis System (Photo courtesy of NanoString Technologies).
Pancreatic cancer is the fourth most common cause of cancer-related death in the USA and has a five-year survival rate of only 6%, which is the lowest rate of all types of cancer and this low survival rate is partially attributed to the difficulty in detecting pancreatic cancer at an early stage.

Pancreatic cancer survival rates can be improved by identifying markers in the blood that can pinpoint patients with premalignant pancreatic lesions called intraductal papillary mucinous neoplasms (IPMNs), which can be characterized as either low- or high-risk for the development of pancreatic cancer.

Scientists at the Moffitt Cancer Center (Tampa, FL, USA) and their colleagues developed a fast, cost-effective blood test by studying micro ribonucleic acids (miRNAs), a class of small molecules that regulate key genes involved in the development and progression of cancer. The test can accurately differentiate low-risk IPMNs that can be monitored from high-risk IPMNs that need to be surgically removed. The team measured the abundance of miRNAs in archived preoperative plasma from individuals with pathologically confirmed IPMNs and healthy controls and discovers plasma miRNAs that distinguish between IPMN patients and controls and between “malignant” and “benign” IPMNs.

The scientists used novel nCounter technology (Nanostring Technology, Seattle, WA, USA) to evaluate 800 miRNAs, and showed that a 30-miRNA signature distinguished 42 IPMN cases from 24 controls. The nCounter Analysis System utilizes a novel digital color-coded barcode technology that is based on direct multiplexed measurement of gene expression and offers high levels of precision and sensitivity at less than one copy per cell. The technology uses molecular "barcodes" and single molecule imaging to detect and count hundreds of unique transcripts in a single reaction.

The signature contained novel miRNAs and miRNAs previously implicated in pancreatic carcinogenesis that had two- to four-fold higher expression in cases than controls. They also generated a five-miRNA signature that discriminated between 21malignant, high-grade dysplasia and invasive carcinoma, and 21 benign low- and moderate-grade dysplasia IPMNs, and showed that paired plasma and tissue samples from patients with IPMNs can have distinct miRNA expression profiles.

Jennifer Permuth-Wey, PhD, the first author of the study, said, “IPMNs are established precursor lesions to pancreatic cancer that account for approximately half of all asymptomatic pancreatic cysts incidentally detected by computerized tomography (CT) scans or magnetic resonance imaging (MRI) in the USA each year. The hope is that in the not-so-distant future a miRNA-based blood test can be used in conjunction with imaging features and other factors to aid the medical team in accurately predicting disease severity of IPMNs and other pancreatic cysts at the time of diagnosis or follow-up so that more informed personalized medical management decisions can be made.” The study was published on August 27, 2015, in the journal Cancer Prevention Research.

Related Links:

Moffitt Cancer Center 
Nanostring Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.