We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Abbott Diagnostics

Abbott Diagnostics provides medical diagnostic instruments, tests, automation and informatics solutions, including cl... read more Featured Products: More products

Download Mobile App




Long-Term Storage Stability of Corticotropin Investigated

By LabMedica International staff writers
Posted on 20 Dec 2021
Print article
Image: The ARCHITECT i2000SR automated immunoassay instrument system (Photo courtesy of Abbott Laboratories)
Image: The ARCHITECT i2000SR automated immunoassay instrument system (Photo courtesy of Abbott Laboratories)
Corticotropin (adrenocorticotropic hormone, ACTH) is a 39-residue polypeptide tropic hormone secreted by the anterior pituitary gland following hypothalamic corticotropin-releasing hormone release. Corticotropin is notorious for its instability.

Cortisol regulates ACTH release via a negative feedback loop. Measurements of plasma ACTH are crucial for differential diagnosis of endocrine disorders including Cushing’s syndrome and adrenal insufficiency but can be complicated by both preanalytical and analytical factors.

Clinical Biochemists at Amsterdam University (Amsterdam, The Netherlands) and their colleagues investigated the long-term storage stability of corticotropin in ethylenediaminetetraacetic acid containing plasma. Plasma specimens were obtained from 20 healthy American subjects that were either neat or spiked with ACTH (22–1,866 pg/ml). Plasma specimens were also obtained from Dutch patients visiting the Amsterdam University Medical Centers (UMC, Amsterdam, The Netherlands), between 2012 and 2013 for various indications.

Individual specimens were assayed on the day of processing (month 0) and five times (at 1, 3, 9, 12, and 18 months) following storage at both −20 °C and −70 °C in five replicates each. Specimens were thawed once on the laboratory countertop at room temperature, mixed by gentle inversion and centrifuged at 3,000×g for 5 minutes Afterwards they were kept at room temperature and quickly analyzed. ACTH results were generated on the ARCHITECT i2000SR automated immunoassay instrument system (Abbott Laboratories, Abbott Park, IL, USA). The team also used a chemiluminescence immunoassay (CLIA) that uses two monoclonal antibodies of which the Liaison capture antibody that is coated to magnetic particles and the detection antibody is linked to an isoluminol derivative (Diasorin, Salugia, Italy).

The team reported that storing human plasma specimens for up to one and a half years at −20 °C or −70 °C had limited influence on the ACTH levels in these specimens measured by the ARCHITECT ACTH assay. In both neat and spiked specimens at the two storage conditions, ACTH levels remained relatively stable over time with only minimal changes in ACTH levels (<11%). Storing specimens for up to four or six years did significantly reduce detectable ACTH levels in native patient plasma specimens. After four years of storage at −20 °C, ACTH levels were 74.8%, whereas after six years of storage ACTH levels were only 46.2% of the original ACTH levels measured using the Liaison immunoassay.

The authors concluded that corticotropin levels are stable in plasma when stored at −20 °C for one and a half years using the Abbott assay, but with longer storage time a significant reduction in corticotropin levels can be expected. Once specimens are stored for future corticotropin measurements, one should consider storage time, storage temperature and assay differences. The study was originally published on October 13, 2021 in the journal Clinical Chemistry and Laboratory Medicine.

Related Links:
Amsterdam University
Amsterdam University Medical Centers
Abbott Laboratories
Diasorin


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.