We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test

By LabMedica International staff writers
Posted on 13 Jan 2025

Parkinson’s disease is the fastest-growing neurological disorder globally and is the second most common after Alzheimer’s disease. More...

Parkinson’s is a neurodegenerative condition, meaning it worsens progressively, and there is currently no cure or drugs that can slow or stop its progression. The diagnosis of Parkinson’s primarily relies on clinical evaluation of motor symptoms, which can result in diagnostic delays or even misdiagnosis. Early detection is critical, as current pharmacological treatments are more effective when administered in the early stages. A new discovery involving blood immune cells has brought researchers closer to identifying a blood biomarker that could help doctors personalize treatments for Parkinson’s disease.

In a collaborative effort, researchers from the WEHI Parkinson’s Disease Research Centre (Victoria, Australia) identified a new connection between blood immune cells and Parkinson’s disease. This research was part of a project that analyzed data from over 500,000 people, marking it as the largest study of its kind. White blood cells play a key role in immune responses and inflammation, and it is known that people with Parkinson’s disease exhibit higher levels of neuroinflammation. The researchers found that changes in the levels of certain blood immune cells could serve as a potential marker for Parkinson’s disease progression, bringing them closer to developing a blood test for diagnosing and monitoring the disease. Mitochondrial dysfunction has long been associated with Parkinson’s, and one potential biomarker for assessing mitochondrial health has been the measurement of the 'mitochondrial DNA copy number' (mtDNA-CN).

However, the new study, published in NPJ Parkinson’s Disease, challenges the previous understanding of the link between mtDNA-CN and Parkinson’s disease, suggesting it may not be due to mitochondrial dysfunction as previously thought. Mitochondria, the energy-producing structures in cells, have their own DNA, which is distinct from nuclear DNA. Each cell contains multiple mitochondria, each with multiple copies of mitochondrial DNA. Some cells, such as those in the heart, require a large number of mitochondria, while others need far fewer. Given the significant role of mitochondrial dysfunction in Parkinson’s disease, it was previously believed that measuring mtDNA-CN in blood samples could serve as a useful biomarker. Since accurately counting the number of mitochondrial DNA copies is nearly impossible, the WEHI team developed a software algorithm to estimate the count from DNA sequencing data obtained from blood samples. They initially tested this method on a dataset of over 10,000 participants.

Their findings revealed that lower levels of mitochondrial DNA in the blood were not directly linked to an increased risk or severity of Parkinson’s disease, contrary to previous assumptions. This apparent connection disappeared when the researchers accounted for the different types of cells in the blood. Instead, they found a stronger association with certain immune cells, specifically neutrophils and lymphocytes, which are types of white blood cells. This suggests that the earlier reported link between mtDNA-CN and Parkinson’s is actually driven by immune responses in the blood, rather than mitochondrial dysfunction. Building on these findings, the researchers replicated their study using data from the UK Biobank, which included nearly 500,000 participants, making it the largest study of mtDNA-CN in Parkinson’s disease to date. This replication confirmed their results and underscored the robustness of their methodology. The researchers have made the specialized software, called mitoCN, available to other research teams worldwide, with the aim of advancing studies beyond Parkinson’s disease.

“The ultimate goal is to be able to screen for Parkinson’s disease in a similar way to the national screening program for bowel cancer, so people can get access to medication sooner,” said Professor Melanie Bahlo, one of the researchers who led the study.

Relatd Links:
WEHI Parkinson’s Disease Research Centre


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Unstirred Waterbath
HumAqua 5
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.