We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microfluidic Chip-Based Device to Measure Viral Immunity

By LabMedica International staff writers
Posted on 05 Dec 2024
Print article
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well their immune system "remembers" the previous strain and reacts to the new one can vary. Currently, there is no reliable way to measure this immune “memory.” Now, new research is working to solve this issue with a device designed to assess immune memory in the blood.

When exposed to a virus, white blood cells known as B-cells activate and differentiate. Some of these B-cells become plasma cells that quickly produce antibodies to fight off the infection, while others turn into memory B-cells, remaining dormant until the same or a similar virus reappears. If the virus returns, memory B-cells can swiftly recognize it and produce antibodies to combat it. Presently, measuring circulating antibodies produced by plasma cells is possible, but antibody levels decline over time. It's far more challenging to assess the presence and effectiveness of memory B-cells, especially against new variants of the same virus. In a new project funded by the NIH, researchers from the University of California, Davis (Davis, CA, USA) and Johns Hopkins Bloomberg School of Public Health (Baltimore, MD, USA) have developed a prototype device that measures memory B-cells by testing how well they can adhere to a surface while recognizing the virus under shear flow. This method, called Shear Activated Cell Sorting (SACS), is at the core of their approach.

The device works by using a microfluidic chip with tiny channels. The base of the channel is coated with the influenza virus. As white blood cells flow through these channels, memory B-cells that recognize viral proteins (antigens) will attach to the surface. By adjusting the flow rate, researchers can measure how strongly the cells adhere. As the flow rate increases, shear forces are applied to the cells, pulling them off the surface. By tracking how many cells adhere or are washed away at different flow rates, researchers can gauge their binding affinity, i.e., how well the memory cells stick to the virus. This data allows the scientists to compare how well the cells bind to the original virus they were exposed to and a new variant. The ultimate goal of this device is to provide public health labs with a tool to measure immunity to new flu variants in populations, aiding in public health decision-making. Additionally, this technology could be adapted to assess immunity against SARS-CoV-2 and other viruses.

“There’s no way to assess if the immune system is prepared for the next mutant flu virus, so we need a new vaccine every year,” said Steven George, professor of biomedical engineering at UC Davis and co-principal investigator on the grant. “We’re trying to figure out if you have white blood cells that can respond quickly to a new variant.”

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fixed Speed Tube Rocker
GTR-FS
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.