Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Brain Protein May Help Assess Recovery Time Following Concussion

By LabMedica International staff writers
Posted on 17 Jan 2017
An initial study of blood samples from athletes has indicated that elevated levels of the brain protein tau following a sport-related concussion are associated with a longer recovery period and delayed return-to-play (RTP), suggesting that tau may serve as a marker to help physicians determine an athlete’s recovery status and RTP readiness.

Despite the 3.8 million sports-related concussions that occur annually in the United States, there are no objective tools to confirm when an athlete is ready to resume play. Returning to play too early, before the brain has healed, increases an athlete’s risk of long-term physical and cognitive problems, especially if he or she sustains another concussion. Currently, physicians and trainers must make RTP decisions based on an athlete’s subjective, self-reported symptoms and their performance on standardized tests of memory and attention.

A research team led by Jessica Gill, RN, PhD of National Institute of Nursing Research (NINR) at National Institutes of Health (NIH) and Jeffrey Bazarian, MD, MPH, of University of Rochester Medical Center evaluated changes in tau in 46 Division I and III college athletes who experienced a concussion. Tau (which plays a role in the development of chronic traumatic encephalopathy (CTE), frontotemporal dementia, and Alzheimer’s disease) was measured by immunoassay of preseason blood plasma samples and again within 6 hours following concussion. The assay employed an ultra-sensitive digital-array technology that uses a single molecule enzyme-linked immunoarray (Simoa, by Quanterix), enabling detection of single protein molecules.

The athletes – a mix of soccer, football, basketball, hockey and lacrosse players from the University of Rochester and Rochester Institute of Technology – were divided into 2 groups based on recovery time. Athletes in the “long RTP” group took more than 10 days to RTP following concussion, while athletes in the “short RTP” group took less than 10 days to return to their sport.

Individuals in the long RTP group had higher levels of tau in their blood 6 hours after concussion compared to those in the short RTP group. Long RTP athletes also exhibited a jump in tau from preseason levels compared to their short RTP counterparts. Statistical analyses showed that higher blood tau concentrations 6 hours post-concussion consistently predicted that an athlete would take more than 10 days to resume play.

“This study suggests that tau may be a useful biomarker for identifying athletes who may take longer to recover after a concussion,” said Prof. Bazarian, “Athletes are typically eager to get back to play as soon as possible and may tell doctors that they’re better even when they’re not. Tau is an unbiased measurement that can’t be gamed, athletes can’t fake it. It may be that tau combined with current clinical assessments could help us make more informed RTP decisions and prevent players from going back to a contact sport when their brains are still healing.”

The study included both male and female athletes and showed that tau-related changes occurred in both genders across a variety of sports. The team found significant differences based on sex: women made up 61% of the long RTP group, but only 28% of the short RTP group. Prof. Bazarian said this isn’t surprising – it is well established that females take longer to recover following concussion than males.

The researchers acknowledge that the study is limited by its small size and that more research is needed to determine if tau can be established as a biomarker of concussion severity and/or recovery. Next steps include getting blood samples from athletes immediately following a concussion to see if the relationship between tau and RTP observed in the study holds true also on the sideline in the first few minutes following a head hit.

The study, by Gill J et al, was published in the January 6, 2017, issue of the journal Neurology.


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.