We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




3D Hydrogel Structures Developed for Biomedical Use

By LabMedica International staff writers
Posted on 13 Feb 2018
A team of biomedical engineers developed a three-dimensional printing method for stimuli-responsive hydrogels that may enable many new applications in diverse areas, including flexible sensors and actuators, biomedical devices, and tissue engineering.

Investigators at Rutgers University (New Brunswick, NJ, USA) used a high-resolution digital additive manufacturing technique known as projection micro-stereolithography to fabricate structures from the temperature-responsive polymer Poly(N-isopropylacrylamide) (PNIPAAm).

PNIPAAm was first synthesized in the 1950s from N-isopropylacrylamide, which is commercially available. More...
It is prepared via free-radical polymerization and is readily functionalized making it useful in a variety of applications. It forms a three-dimensional hydrogel when cross-linked with N,N’-methylene-bis-acrylamide (MBAm) or N,N’-cystamine-bis-acrylamide (CBAm). When heated in water above 32 degrees Celsius, it undergoes a reversible lower critical solution temperature (LCST) phase transition from a swollen hydrated state to a shrunken dehydrated state, losing about 90% of its volume. Since PNIPAAm expels its liquid contents at a temperature near that of the human body, it has been investigated by many researchers for possible applications in tissue engineering and controlled drug delivery.

For the current study, control of the temperature dependent deformation of three-dimensional printed PNIPAAm was achieved by controlling the manufacturing process parameters as well as the polymer resin composition. A report on the process published in the January 31, 2018, online edition of the journal Scientific Reports described the sequential deformation of a three-dimensional printed PNIPAAm structure by selective incorporation of ionic monomer that shifted the swelling transition temperature of PNIPAAm.

“If you have full control of the shape, then you can program its function,” said senior author Dr. Howon Lee, assistant professor of mechanical and aerospace engineering at Rutgers University. “I think that is the power of three-dimensional printing of shape-shifting material. You can apply this principle almost everywhere. The full potential of this smart hydrogel has not been unleashed until now. We added another dimension to it, and this is the first time anybody has done it on this scale. They are flexible, shape-morphing materials. I like to call them smart materials.”

Related Links:
Rutgers University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
Laboratory Software
ArtelWare
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.