We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Molecular Scaffold Guides Connections Between Brain Cells

By Labmedica staff writers
Posted on 27 May 2008
Scientists have developed techniques to label different cell types in the brain with chemical markers, and found that nonsignaling cells called glia act as a scaffold, guiding the growing axons of the stellate cells and determining where they form synapses to the Purkinje cells. More...


Central to the wiring architecture of the cerebellum are the so-called Purkinje cells, a type of neuron that deploys a bushy array of fibers called dendrites that extend through layers of cerebellar territory. The dendrites gather signals from many other neurons in the cerebellum and send signals to other parts of the body.

Distinctive wiring patterns are unmistakable in the cerebellum, a brain region best known for controlling movement, in both mice and people. Compared to regions involved in more sophisticated functions like vision and thought, "the cerebellum is an easier place to start, because of its very organized architecture,” said Z. Josh Huang, Ph.D., a professor at Cold Spring Harbor Laboratory (CSHL; Cold Spring harbor, NY, USA), who led the team that identified molecules guiding this highly specific neuronal targeting in the developing brains of mice.

A few years ago, Dr. Huang's team established that a protein from the immunoglobulin family directs one group of cerebellar neurons to connect with a specific part of Purkinje cells. Immunoglobulin proteins are best known for acting as antibodies in the immune system, where they take on myriad forms to attack new invaders. Here, however, they were observed to be involved in the wiring of the brain.

Dr. Huang's team traced the subcellular targeting of a different set of cerebellar neurons called stellate cells, which make numerous connections to the dendritic "bush” emanating from clumps of Purkinje cells. Unlike the cells they had studied previously, however, these neurons need help to form synapses. The nonsignaling brain cells, known as glia, form a kind of scaffold directing the growth of nerve fibers and their connections between specific types of neurons.

This study of how the brain develops its complex wiring, has given scientists hope that they will be able to clarify what goes wrong in disorders such as autism.

The study was reported in the April 2008 journal PLoS Biology.


Related Links:
Cold Spring Harbor Laboratory

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.