We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Computer Model Used To Study and Design Miniature Biosensors

By Labmedica staff writers
Posted on 09 Jan 2008
Scientists have developed a new computer model to study and design miniature biosensors, which could help life scientists perfect lab-on-a-chip technology.

Biosensors are portable devices that integrate electronic circuitry with biologic molecules such as antibodies or DNA. More...
They are designed to capture and detect specific target molecules, allowing them to identify pathogens, DNA, or other substances. As such they have a myriad of uses, ranging from medical diagnostics, drug research and delivery, and environmental monitoring.

In efforts to design more sensitive devices, engineers have created sensors with various geometries: some capture the biomolecules on a flat or planar surface, others use a single cylindrical nanotube as a sensing element, and others use several nanotubes, arranged in a crisscrossing pattern like overlapping sticks.

Prof. Alam led a team from Purdue University (West Lafayette, IN, USA) in creating a mathematical model that can relate the shape of a biosensor to its performance. "Many universities and companies are conducting experiments in biosensors,” Prof. Alam said. "The problem is that until now there has been no way to consistently interpret the wealth of data available. Our work provides a completely different perspective on how to analyze data and how to interpret them.”

Prof. Alam additionally commented, "It's not what happens after the molecule is captured that determines how well the sensor works. It's how fast the sensor actually captures the molecule to begin with that matters most.” This distinction is important for the design of biosensors and it explains why biosensors with a single nanotube perform better than sensors containing several nanotubes or flat planar sensors. A single nanotube eliminates a phenomenon called "diffusion slow down.” As a result, target molecules move faster toward the nanotube. In addition, smaller sensors work better because they can capture the target molecules better, rather than detect them better. This means that target molecules move faster toward single nanotubes than other structures and also helps eliminate the diffusion slow down.

An impediment that prevented scientists from finding this before is that biosensor analysis is computationally too difficult to perform using conventional approaches. To overcome, the team at Purdue used a mathematical technique called "Cantor transformation” to simplify the calculations.

The scientists tested and validated their model with experimental data from other laboratories. The work was published in the December 21, 2007 edition of the journal Physical Review Letters.


Related Links:
Purdue University

New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Portable Electronic Pipette
Mini 96
Silver Member
PCR Plates
Diamond Shell PCR Plates
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Size assessment of patient-derived material from various tauopathies (Aragonès Pedrola J. et al., PNAS (2025); DOI: 10.1073/pnas.2502847122)

First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection

The disease process in Alzheimer’s begins long before memory loss or cognitive decline becomes apparent. During this silent phase, misfolded proteins gradually form amyloid fibrils, which accumulate in... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.