We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Barcode Technology to Help Diagnose Cancer More Precisely

By LabMedica International staff writers
Posted on 22 Nov 2024

A new pathology tool utilizing barcode technology shows promise for use in cancer diagnoses. More...

Developed at Yale School of Medicine (New Haven, CT, USA), this tool, called Patho-DBiT (pathology-compatible deterministic barcoding in tissue), leverages DNA barcoding to map the spatial relationships between RNA and proteins, enabling a comprehensive examination of RNA, some types of which play regulatory roles in cancer. The innovation lies in its use of microfluidic devices that deliver barcodes into tissue from two directions, creating a unique 2D “mosaic” of pixels. This mosaic provides spatial information that could be crucial for developing patient-specific targeted therapies.

In their study published in the journal Cell, the researchers explain how Patho-DBiT could unlock a vast amount of information preserved in tissue biopsy samples. Potential future applications of this technology include the creation of targeted therapies and understanding the mechanisms behind the transformation of low-grade tumors into more aggressive forms, which could help find ways to prevent this progression. However, further research is required to test and validate patient samples before Patho-DBiT can be integrated into routine pathology diagnostics.

“It’s the first time we can directly ‘see’ all kinds of RNA species, where they are and what they do, in clinical tissue samples,” said Yale’s Rong Fan, PhD, senior author of the study. “Using this tool, we’re able to better understand the fascinating biology of each RNA molecule which has a very rich life cycle beyond just knowing whether each gene is expressed or not. I think it’s going to completely transform how we study the biology of humans in the future.”

“There are millions of these tissues that have been archived for so many years, but up until now, we didn’t have effective tools to investigate them at spatial level,” said the study’s first author Zhiliang Bai, PhD, a postdoctoral associate in Fan’s lab. “RNA molecules in these tissues we’re looking at are highly fragmented and traditional methods can’t capture all the important information about them. It’s why we’re very excited about Patho-DBiT.”


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
Alcohol Testing Device
Dräger Alcotest 7000
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.