We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biomarker Improves Diagnosis of Esophageal Cancer

By LabMedica International staff writers
Posted on 23 Jan 2014
Print article
Image: BioCoat Matrigel Invasion Chambers (Photo courtesy of BD Bioscience).
Image: BioCoat Matrigel Invasion Chambers (Photo courtesy of BD Bioscience).
A biomarker has been discovered that has the potential to improve the diagnosis, prognosis, and treatment of Esophageal Squamous Cell Carcinoma (ESCC), the major histological form of esophageal cancer, a leading cause of cancer death worldwide.

Currently, there is poor prognosis for ESCC patients and the five-year overall survival rate ranges from 20% to 30%, and as such, there is an urgent need for biomarkers which can diagnose this disease as early as possible to estimate reaction to chemotherapy or radiotherapy in patients and predict the overall survival rate of patients undergoing treatment.

Scientists at the National University of Singapore (Singapore) studied between 2010–2011 a total of 69 paired primary ESCC tumor tissues and their matched nontumorous tissues that were surgically removed, snap-frozen in liquid nitrogen for protein, ribonucleic acid (RNA), and DNA extraction. The study included a second cohort of a total of 180 paired primary ESCC tumor tissues and their matched non-tumor tissues that were surgically removed and embedded in a paraffin block for tissue microarray (TMA) construction between 2001 and 2005.

The investigators discovered that the RNA editing enzyme adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes the editing process, is significantly overexpressed in ESCC tumors. They observed that the ADAR1 changes the product of the Antizyme Inhibitor 1 (AZIN1) protein to a form that promotes the development of the disease. Clinically, the tumoral overexpression of ADAR1 gene was correlated with the shorter survival time of ESCC patients. RNA editing was analyzed by real-time polymerase chain reaction and migration invasion assays were performed using 24-well BioCoat Matrigel Invasion Chambers (BD Biosciences; San Jose, CA, USA).

Leilei Chen, MD, PhD, a senior author of the study said, “Investigating the connection between ADAR1-mediated RNA editing and cancer progression is only the initial step in this investigation. The tumoral over-expression of ADAR1 can be used as an early warning sign of ESCC and halting or reversing the process may block the cells' conversion from normal to malignant.” The authors concluded that that ADAR1 can serve as a useful biomarker to detect disorders leading to ESCC and as a potential therapeutic target. The study may also provide the key to a biological process for drug development in the treatment of ESCC. The study was published on December 3, 2013, in the journal Cancer Research.

Related Links:

National University of Singapore
BD Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.