We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Biomarker Improves Diagnosis of Esophageal Cancer

By LabMedica International staff writers
Posted on 23 Jan 2014
A biomarker has been discovered that has the potential to improve the diagnosis, prognosis, and treatment of Esophageal Squamous Cell Carcinoma (ESCC), the major histological form of esophageal cancer, a leading cause of cancer death worldwide. More...


Currently, there is poor prognosis for ESCC patients and the five-year overall survival rate ranges from 20% to 30%, and as such, there is an urgent need for biomarkers which can diagnose this disease as early as possible to estimate reaction to chemotherapy or radiotherapy in patients and predict the overall survival rate of patients undergoing treatment.

Scientists at the National University of Singapore (Singapore) studied between 2010–2011 a total of 69 paired primary ESCC tumor tissues and their matched nontumorous tissues that were surgically removed, snap-frozen in liquid nitrogen for protein, ribonucleic acid (RNA), and DNA extraction. The study included a second cohort of a total of 180 paired primary ESCC tumor tissues and their matched non-tumor tissues that were surgically removed and embedded in a paraffin block for tissue microarray (TMA) construction between 2001 and 2005.

The investigators discovered that the RNA editing enzyme adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes the editing process, is significantly overexpressed in ESCC tumors. They observed that the ADAR1 changes the product of the Antizyme Inhibitor 1 (AZIN1) protein to a form that promotes the development of the disease. Clinically, the tumoral overexpression of ADAR1 gene was correlated with the shorter survival time of ESCC patients. RNA editing was analyzed by real-time polymerase chain reaction and migration invasion assays were performed using 24-well BioCoat Matrigel Invasion Chambers (BD Biosciences; San Jose, CA, USA).

Leilei Chen, MD, PhD, a senior author of the study said, “Investigating the connection between ADAR1-mediated RNA editing and cancer progression is only the initial step in this investigation. The tumoral over-expression of ADAR1 can be used as an early warning sign of ESCC and halting or reversing the process may block the cells' conversion from normal to malignant.” The authors concluded that that ADAR1 can serve as a useful biomarker to detect disorders leading to ESCC and as a potential therapeutic target. The study may also provide the key to a biological process for drug development in the treatment of ESCC. The study was published on December 3, 2013, in the journal Cancer Research.

Related Links:

National University of Singapore
BD Biosciences



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.