We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

By LabMedica International staff writers
Posted on 09 Apr 2025

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. More...

These infections are more difficult to treat, often necessitate costlier or more toxic medications, and lead to extended hospital stays and higher mortality rates. In 2021, the World Health Organization (WHO) reported that 450,000 people developed multidrug-resistant tuberculosis, with a treatment success rate falling to just 57%. Current resistance detection methods, employed by organizations such as the WHO, either take too long—such as culture-based testing—or fail to detect rare mutations, as seen with some DNA-based tests. Now, a new artificial intelligence (AI)-based method has been developed to more accurately detect genetic markers of antibiotic resistance in Mycobacterium tuberculosis and Staphylococcus aureus, which could facilitate faster and more effective treatment.

Researchers at Tulane University (New Orleans, LA, USA) have introduced an innovative Group Association Model (GAM), leveraging machine learning to identify genetic mutations associated with drug resistance. Unlike traditional tools that might mistakenly link unrelated mutations to resistance, GAM operates without relying on prior knowledge of resistance mechanisms, making it more adaptable and capable of identifying previously undetected genetic alterations. The model, detailed in Nature Communications, addresses both the slow diagnostic processes and the failure to detect rare mutations by analyzing whole genome sequences. It compares groups of bacterial strains with varying resistance profiles to identify genetic changes that consistently indicate resistance to specific drugs.

In their study, the researchers applied GAM to over 7,000 strains of Mtb and nearly 4,000 strains of S. aureus, identifying crucial mutations linked to resistance. They discovered that GAM not only matched or surpassed the accuracy of the WHO’s resistance database but also significantly reduced false positives, which are incorrect markers of resistance that could lead to improper treatment. The combination of machine learning with GAM also enhanced its predictive capabilities, particularly when working with limited or incomplete data. In validation tests using clinical samples from China, the machine-learning-enhanced model outperformed the WHO-based methods in predicting resistance to critical first-line antibiotics. This breakthrough is important because early detection of resistance allows doctors to adjust treatment regimens appropriately, preventing the infection from worsening or spreading. The model's ability to identify resistance without requiring expert-defined rules also suggests it could be applied to other bacterial infections.

“Current genetic tests might wrongly classify bacteria as resistant, affecting patient care,” said lead author Julian Saliba, a graduate student in the Tulane University Center for Cellular and Molecular Diagnostics. “Our method provides a clearer picture of which mutations actually cause resistance, reducing misdiagnoses and unnecessary changes to treatment.”


New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
Laboratory Software
ArtelWare
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study for urine-based HPV screening applies the PHASiFY urine-based DNA concentration technology (Photo courtesy of PHASE Scientific)

First And Largest Prospective Study of Urine-Based Genetic Methylation Testing for Cervical Cancer Screening

Cervical cancer remains one of the most serious threats to women’s health, with millions still lacking access to effective screening. While human papillomavirus (HPV) vaccination programs are expanding... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Technology

view channel
Image: The SWITCH hybrid pipette is designed to simplify and accelerate pipetting tasks (Photo courtesy of INTEGRA)

Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting

Manual pipettes offer the control needed for delicate tasks such as mixing or supernatant removal, but typically fall short in repetitive workflows like aliquoting. Electronic pipettes solve this problem... Read more

Industry

view channel
Image: Lunit and Agilent Technologies are collaborating to develop AI-powered companion diagnostics. (Photo courtesy of Lunit)

Lunit and Agilent Partner to Develop AI-Powered Cancer Diagnostics

Biomarker testing plays a critical role in precision oncology, guiding tailored therapies for patients. However, current methods often rely heavily on manual interpretation, which can introduce variability... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.