Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mutations in Rare Asbestos-Caused Cancer Identified by Targeted Next-Generation Sequencing

By LabMedica International staff writers
Posted on 29 Dec 2014
Targeted next-generation sequencing, an advanced genomic analysis tool, was used to identify genes linked to the development of the rare cancer malignant pleural mesothelioma (MPM).

Malignant mesothelioma is a rare form of cancer that develops from transformed cells originating in the mesothelium, the protective lining that covers many of the internal organs of the body. More...
It is usually caused by exposure to asbestos. The most common anatomical site for the development of mesothelioma is the pleura (the outer lining of the lungs and internal chest wall), but it can also arise in the peritoneum (the lining of the abdominal cavity), the pericardium (the sac that surrounds the heart), or the tunica vaginalis (a sac that surrounds the testis). The three-year survival rate for patients with this disease is only 8%, as most MPM patients are diagnosed with late stage disease with limited therapeutic options.

Investigators at the University of Torino (Orbassano, Italy) used targeted next-generation sequencing (NGS), a method that determines the identity and order of nucleotides in the DNA comprising a specific set of genes rather than sequencing the entire genome, to analyze tumor cells from patients with advanced stage MPM.

In this study, a series of 123 formalin-fixed, paraffin embedded (FFPE) tissue samples with clinical annotations was retrospectively tested with the Life Technologies (Carlsbad, CA, USA) Ion AmpliSeq Cancer Hotspot Panel v.2 library kit to investigate 50 genes plus another two, BRCA1 associated protein-1 (BAP-1) and Neurofibromatosis-2 (NF2), frequently altered in MPM.

Results revealed that mutations clustered in two main molecular pathways, p53/DNA repair and PI3K/AKT (PI3 kinase/protein kinase B). Certain mutations within the PIK3CA, STK11, or TP53 genes associated with a decreased time to disease progression. Additionally, there was a decrease in the time to disease progression and overall survival when there was an accumulation of multiple mutations. Furthermore, a mutation in the BAP-1 gene correlated with nuclear localization of the BAP-1 protein.

Summing up the study, the investigators said, “Our results show that NGS is clearly feasible despite the very well-known challenges of fragmented and low-yield genomic DNA isolated from FFPE tumor tissue. Our data did not identify any specific mutation as a single driver gene, as found in adenocarcinoma of the lung, however our data suggests that in MPM there is an accumulation of several non-driver mutations, which may explain the extremely long latency phase of this asbestos-related disease. Some of the mutations will further be assessed for functional changes and could be carefully considered as stratification factors for future clinical trials investigating the role of targeted-therapies in MPM.”

The study was published in the December 15, 2014, online edition of the Journal of Thoracic Oncology.

Related Links:

University of Torino
Life Technologies



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.