We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Class of Bloodstream Infection Diagnostics to Enable Culture-Free, Same-Day Organism Identification

By LabMedica International staff writers
Posted on 21 Nov 2023
Print article
Image: Keynome ID is a proprietary algorithm that classifies the bacterial species present in a sample (Photo courtesy of Day Zero Diagnostics)
Image: Keynome ID is a proprietary algorithm that classifies the bacterial species present in a sample (Photo courtesy of Day Zero Diagnostics)

The World Health Organization reports that sepsis-related complications lead to 11 million deaths annually, making up a fifth of all global deaths. Sepsis, a severe infection, demands prompt and effective treatment as mortality risks escalate with each passing hour. Traditional culture-based diagnostic methods, which take days to identify pathogens and determine antimicrobial susceptibility, contribute to either excessive or insufficient treatment, particularly when antibiotic-resistant organisms are involved. This situation underscores the urgent need for rapid diagnostic technologies capable of identifying pathogens and providing antimicrobial susceptibility results within hours, thus guiding effective therapy.

Oxford Nanopore (Oxford, UK) and Day Zero Diagnostics (Boston, MA, USA) have entered into a collaboration to develop a comprehensive diagnostic solution for bloodstream infections, a major cause of sepsis. This collaboration will seek to develop a diagnostic system that offers same-day pathogen identification and genomic-based antibiotic susceptibility profiles without the need for blood cultures. Both companies aim to streamline this system for clinical environments, such as hospitals, and plan to pursue regulatory approvals, including clearance from the FDA, in the future.

This innovative diagnostic system will combine Day Zero Diagnostics’ advanced sample preparation technology, which highly enriches samples, with its AI-powered Keynome technology. Keynome is adept at identifying microbes and determining antibiotic susceptibility. This system will be paired with sequencing data from Oxford Nanopore's PromethION 2 Solo, a high-throughput, compact sequencing device. The partnership is focused on creating an automated workflow for sample processing and sequencing that is tailored to the operational demands of clinical hospital laboratories. The PromethION 2 Solo platform from Oxford Nanopore, recognized for its real-time capabilities, scalability, and improved accuracy in single-nucleotide sequencing, is an ideal fit for the rapid and cost-efficient identification of pathogens directly from clinical samples.

"We are pleased to launch this collaboration with Oxford Nanopore that integrates nanopore sequencing innovations with Day Zero Diagnostics' platform technologies to develop a first-of-its kind diagnostic solution for sepsis," said Jong Lee, CEO and co-founder of Day Zero Diagnostics. "Culture free, same day, organism identification and antimicrobial susceptibility profiling directly from native samples will be a game changer for infectious disease diagnostics, directly enabling early, targeted life-saving treatment for patients."

"We are excited to partner with Day Zero Diagnostics to bring the benefits of nanopore sequencing to fight bloodstream infections," said Gordon Sanghera, CEO of Oxford Nanopore Technologies. "Our hope is that the rapid results, high accuracy and accessibility of the Oxford Nanopore system, combined with DZD's expertise and workflow, will make it possible for more people to access a solution that's fast and effective in the fight against bloodstream infections."

Related Links:
Oxford Nanopore
Day Zero Diagnostics

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.