We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Test Uses Glow-in-the-Dark Paper

By LabMedica International staff writers
Posted on 16 Oct 2018
Print article
Image: This close-up of the glow-in-the-dark paper strip contains two copies of the test. The three glowing dots per test indicate that you can check on three different antibodies within one test (Photo courtesy of Bart van Overbeeke).
Image: This close-up of the glow-in-the-dark paper strip contains two copies of the test. The three glowing dots per test indicate that you can check on three different antibodies within one test (Photo courtesy of Bart van Overbeeke).
A practicable and reliable way to test for infectious diseases has been found and all that is needed are a special glowing paper strip, a drop of blood and a digital camera.

The test uses fully integrated “sample‐in‐signal‐out” microfluidic paper‐based analytical devices (μPADs) relying on bioluminescence resonance energy transfer (BRET) switches for analyte recognition and colorimetric signal generation.

Scientists from the Eindhoven University of Technology (Eindhoven, the Netherlands) and their colleagues at the Keio University (Kohoku-ku, Japan) developed the devices use BRET‐based antibody sensing proteins integrated into vertically assembled layers of functionalized paper, and their design enables sample volume‐independent and fully reagent‐free operation, including on‐device blood plasma separation. User operation is limited to the application of a single drop (20–30 μL) of sample (serum, whole blood) and the acquisition of a photograph 20 minutes after sample introduction, with no requirement for precise pipetting, liquid handling, or analytical equipment except for a camera.

The color is created thanks to the secret ingredient of the paper strip: a so-called luminous sensor protein. After a droplet of blood comes onto the paper, this protein triggers a reaction in which blue light is produced (known as bioluminescence). An enzyme that also illuminates fireflies and certain fish, for example, plays a role in this. In a second step, the blue light is converted into green light, but here comes the clue: if an antibody binds to the sensor protein, it blocks the second step. A lot of green means few antibodies and, vice versa, less green means more antibodies.

The ratio of blue and green light can be used to derive the concentration of antibodies. By measuring the ratio precisely, they suffer less from problems that other biosensors often have, such as the signal becoming weaker over time. In their prototype, the team successfully tested three antibodies simultaneously, for human immunodeficiency virus (HIV), influenza and dengue fever. Maarten Merkx, PhD, a professor of Bioengineering and a leading author of the study, said, “A biochemical reaction causes the underside of paper to emit blue-green light; the bluer the color, the higher the concentration of antibodies. A digital camera, for example from a mobile phone, is sufficient to determine the exact color and thus the result.” The study was published on August 31, 2018, in the journal Angewandte Chemie International Edition.

Related Links:
Eindhoven University of Technology
Keio University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.