We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Direct Blood Dry LAMP System Detects Malaria Species

By LabMedica International staff writers
Posted on 09 Feb 2017
Plasmodium falciparum is thought to be the most prevalent among Plasmodium species and although this species has been well investigated epidemiologically, non-P. More...
falciparum malaria infections have been rather neglected because of their less severe clinical symptoms and difficulties of diagnosis.

Molecular diagnostic tests are highly sensitive methods to detect malaria infection even at very low parasitemia levels. Loop-mediated isothermal amplification (LAMP) is an alternative molecular method, which requires neither expensive machines nor a sophisticated laboratory. Although LAMP is more user-friendly, it still needs burdensome blood sample preparation.

Scientists at the Hokkaido University School of Medicine collected human blood DNA samples from 74 residents from a malaria endemic area in eastern Zambia. These malaria dry-LAMPs were optimized for field or point-of-care operations, and evaluated in the field at a malaria endemic area in Zambia with 96 human blood samples. A malaria conventional rapid diagnostic test (RDT) that immunologically detects and differentiate P. falciparum (Pf) and non-P. falciparum (non-Pf) species, was also used.

To determine the sensitivities and specificities, results obtained by the on-site LAMP diagnosis were compared with those by the nested polymerase chain reaction (PCR) and nucleotide sequencing of its product on an ABI 3130 capillary sequencer. For the LAMP reaction positive samples exhibited a bright fluorescent green color under a transilluminator, and two independent observers recorded the result.

The team reported that the dry LAMPs showed the sensitivities of 89.7% for Pf and 85.7% for non-Pf, and the specificities of 97.2% for Pf and 100% for non-Pf, with purified blood DNA samples. The direct blood LAMP diagnostic methods, in which 1 μL of anticoagulated blood were used as the template, showed the sensitivities of 98.1% for Pf, 92.1% for non-Pf, and the specificities of 98.1% for Pf, 100% for non-Pf. The prevalences of P. falciparum, P. malariae and P. ovale in the surveyed area were 52.4%, 25.3% and 10.6%, respectively, indicating high prevalence of asymptomatic carriers in endemic areas in Zambia.

The authors conclude that the malaria the assays, known as CZC-LAMPs, showed high sensitivity and specificity to both P. falciparum and non-P. falciparum. These malaria CZC-LAMPs provide new means for rapid, sensitive and reliable point-of-care diagnosis for low-density malaria infections, and are expected to help update current knowledge of malaria epidemiology, and can contribute to the elimination of malaria from endemic areas. The study was published on January 13, 2017, in the journal Parasites &Vectors.


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.