We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Programmable DNA Nanosystem Designed for Low Cost Molecular Detection

By LabMedica International staff writers
Posted on 05 Jul 2016
Based in a novel way on the self-assembly forces between DNA complementary strands, researcher have developed programmable nanosystem that has now been applied in a proof-of-principle study on Ebola virus diagnosis potential.

The nanomachine is based on “the magic of how DNA works,” said Erik R. More...
Henderson, professor, Iowa State University (Ames, IO, USA). Prof. Henderson and former student Dr. Divita Mathur developed the system and its first application: genetic detection of Ebola virus. Such a machine would prove valuable in the developing world, where access to diagnostic medical equipment can be rare. This nanotechnology could be fabricated cheaply and deployed easily. In conjunction with a smartphone app, it could be used independently of traditional medical facilities to detect Ebola or other pathogens and diseases.

The trick lies in understanding the rules that govern how DNA works, said Prof. Henderson, “It’s possible to exploit that rule set in a way that creates advantages for medicine and biotechnology.” The researchers harnessed DNA hybridization forces so that the components of the nanomachines, once added to water and then heated and cooled, find each other and assemble correctly without further effort from the individual deploying the machines.

More technically, they harnessed the difference in persistence length (“rigidity”) of single-stranded and double-stranded DNA to elicit a defined physical state change in a self-assembling DNA nanosystem, a platform they call OPTIMuS (Oligo-Propelled Technology for Interrogating Molecular Systems). This inducible state change can be used to interrogate user-programmed molecular interactions within OPTIMuS. In this study they showed how OPTIMuS can be used to detect a soluble target molecule and assess the relative strength of a non-covalent (base stacking) molecular interaction. They employed an embedded photonic system that tests for the presence of the target molecules, where upon detection the photonic system flashes a light, which can be read with a fluorometer.

This sort of technology could be modified to detect other pathogens and other kinds of molecules. Prof. Henderson also envisions development of similar nanomachines that would encapsulate medication for targeted delivery.

The study, by Mathur D & Henderson ER, was published online June 7, 2016, in the journal Scientific Reports.

Related Links:
Iowa State University


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.