We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Buruli Ulcer Diagnosed by Fluorescent Thin Layer Chromatography

By LabMedica International staff writers
Posted on 29 Nov 2015
Mycobacterium ulcerans infection, known as Buruli ulcer, is a disease of the skin and subcutaneous tissues which is an important but neglected tropical disease with its major impact in rural parts of West and Central Africa where facilities for diagnosis and management are poorly developed. More...


Since prevention is not possible in the absence of either an effective vaccine or a clear understanding of the mode of transmission, a major control strategy for Buruli ulcer is early detection and treatment, hinging on effective laboratory confirmation of suspected cases. Standard routine laboratory techniques for the confirmation of Buruli ulcer disease are M. ulcerans isolation by culture, histopathology, smear microscopy for acid-fast bacilli (AFB) and polymerase chain reaction (PCR).

A team of international scientists led by those at Kwame Nkrumah University of Science and Technology (KNUST) (Kumasi, Ghana) recruited patients from Buruli ulcer treatment centers from January 2014 to June 2014 in Benin, DR Congo, Ghana and Côte d’Ivoire if they had a skin lesion suspected to be caused by M. ulcerans infection. Samples were collected by fine needle aspiration (FNA) or swab according to whether the lesion was non-ulcerated or ulcerated respectively and by biopsy if obtained at surgery. If PCR for the M. ulcerans repeat sequence IS2404 was positive they were included as Buruli ulcer disease patients and if the PCR was negative they were included in the control group.

The team evaluated fluorescent thin layer chromatography (f-TLC) for detection of mycolactone in the laboratory using samples from patients with Buruli ulcer and patients with similar lesions that gave a negative result on PCR. The f-TLC used was a modification of an existing methodology. The TLC plates were placed on an ultra violet lamp with a 365 nm filter. The fluorescent band at retention factor 0.23 from the patient sample was compared to that of the standards to confirm the presence of mycolactone. Two readers were made to confirm the mycolactone test result before test result reporting and were blinded to the PCR test result.

There were 71 IS2404 PCR positive samples and 28 PCR negative samples which were used as controls. The scientists found that mycolactone can be detected in 73% of M. ulcerans infected samples by fluorescent thin layer chromatography. The technique was easy to perform and the result could be read within one hour. The sensitivity was higher than that of microscopy (30–60%) or culture (35%–60%) and compared favorably with that of histology (82%). There was no difference in sensitivity when FNA and swabs were compared although the number of FNA samples was small.

The authors concluded that that mycolactone can be detected from M. ulcerans infected skin tissue by f-TLC technique. The technique is simple, easy to perform and read with minimal costs. In this study it was undertaken by a member of the group from each endemic country. It is a potentially implementable tool at the district level after evaluation in larger field studies. The study was published on November 19, 2015, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

Kwame Nkrumah University of Science and Technology 



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Hand-Held Immunofluorescence Analyzer
WS-Si1500
New
Modular Hemostasis Automation Solution
CN Track
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The discovery of early markers for ovarian cancer that would have improved sensitivity could aid detection (Photo courtesy of Adobe Stock)

Highly Accurate Biomarkers Could Detect Ovarian Cancer Before Clinical Diagnosis

Ovarian cancer is a deadly and challenging disease, primarily because early detection is difficult. Most women (70-75%) are diagnosed only after the cancer has already spread, which significantly reduces... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.