We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Single Rapid Test Detects Known and Unknown Pathogens

By LabMedica International staff writers
Posted on 10 Nov 2014
Print article
Image: Loading a fluorescently-labeled viral DNA sample onto the Microbial Detection Array (Photo courtesy of Lawrence Livermore National Laboratory).
Image: Loading a fluorescently-labeled viral DNA sample onto the Microbial Detection Array (Photo courtesy of Lawrence Livermore National Laboratory).
Diagnostic technology developed for rapid detection of pathogens in the wounds of soldiers has been licensed to a private company that intends to use it to create new medical laboratory tests.

The Lawrence Livermore Microbial Detection Array (LLMDA) is designed to improve on two pathogen identification techniques: Polymerase chain reaction (PCR) analysis and DNA sequencing. PCR diagnostic techniques can process no more than 50 DNA signatures at one time and the likelihood of discovering new species are low with PCR. The new technology is capable of identifying thousands of bacteria and viruses in a single test.

Scientists at the Lawrence Livermore National Laboratory (LLNL; Livermore, CA, USA) developed the LLMDA. The process begins by purifying DNA or ribonucleic acid (RNA) from a blood or stool sample. The purified DNA or RNA is labeled with a fluorescent dye, and then pipetted onto the microarray which sits on top of an incubator heated to 42 °C. The microarray contains nearly 400,000 probes arranged in a checkerboard pattern on a 2.5 × 7.5-cm glass slide. Scientists examine these probes with a fluorescent scanner and analysis software. The microarray’s checkerboard has several dozen squares for each of the thousands of organisms sequenced to date. That allows it to simultaneously examine multiple regions from each organism.

From a study that evaluated 124 wound samples from 44 soldiers injured in Iraq and Afghanistan using LLDMA, the scientists found certain bacteria, such as Pseudomonas species and Acinetobacter baumannii, which are common hospital-related infections, to be associated with wounds that did not heal successfully. Bacteria often related to the gastrointestinal system, such as Escherichia coli and Bacteroides species, were also often found in wounds that did heal successfully. The test was able to detect within 24 hours any virus or bacteria that has been sequenced and included among the array's probes.

The LLNL scientists are already building on the capacity of this microbial array. They are currently testing a next-generation LLMDA that contains 2.1 million probes representing about 178,000 sequences from 5,700 viruses and 785,000 sequences from thousands of bacteria. The new version also includes about 237,000 sequences from hundreds of fungi and about 202,000 sequences from 75 protozoa. Lawrence Livermore National Laboratory has licensed its microbial detection array technology to MOgene LC (St. Louis, MO, USA).

Related Links:
Lawrence Livermore National Laboratory
MOgene LC 


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.