We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Pneumonia Bacteria Can Compromise Heart Health

By LabMedica International staff writers
Posted on 06 Oct 2014
Streptococcus pneumoniae, the bacterium responsible for most cases of bacterial pneumonia, can invade the heart and cause the death of heart muscle cells.

Bacterial pneumonia in adults carries an elevated risk for adverse cardiac events, such as heart failure, arrhythmias, and heart attacks that contribute substantially to mortality, but how the heart is compromised has been indeterminate.

Scientists at the University of Texas Health Science Center (San Antonio, TX, USA) leading an international team, investigated the reasons for heart failure during invasive pneumococcal disease, when S. More...
pneumoniae bacteria infect major organs such as the lungs, bloodstream, and brain, in mice, and subsequently confirmed some of their main findings in rhesus macaques and in heart tissue from deceased human patients.

The investigators used a variety of methods to obtain their results including histology; cardiac troponin assays determined using the mouse Cardiac Tn-I enzyme-linked immunosorbent assay (ELISA) kit (Life Diagnostics; West Chester, PA, USA); fluorescent microscopy of tissue sections and the images were acquired using the FV-1000 confocal system (Olympus; Center Valley, PA, USA); and cell based assays using flow cytometry on the BD FACSCanto II, (BD Biosciences; San Jose, CA, USA).

On the examination of the hearts of the mice, the team found microscopic sites of injury called microlesions in the heart muscle. S. pneumoniae were found within these microlesions, indicating the bacteria were able to invade and multiply within the heart. Looking in more detail, they identified dying heart muscle cells in the tissue surrounding microlesions. The tissues from three rhesus macaques that had died from pneumococcal pneumonia, the scientists found cardiac microlesions that were similar in size and appearance to those seen in mice, but without the presence of S. pneumoniae bacteria.

The authors concluded that ampicillin acts by breaking bacteria apart and releasing their contents, including pneumolysin and this could exacerbate the death of heart muscle cells. Alternative antibiotics that do not spill their bacterial targets' contents exist and might be advantageous. Having shown for the first time that S. pneumoniae can directly damage the heart, which could help explain the link between pneumonia and adverse heart events, the team also concluded that research is merited to determine the true frequency of cardiac microlesions in patients hospitalized with invasive pneumococcal disease, if modifications in antibiotic therapy improve long-term outcomes, and if prevention of cardiac damage is an indication for vaccination. The study was published on September 18, 2014, in the journal Public Library of Science Pathogens.

Related Links:

University of Texas Health Science Center
Life Diagnostics
Olympus 


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.