We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Automated Nucleic Acid Detection System Rapidly Resolves Gram-Positive Blood Cultures

By LabMedica International staff writers
Posted on 17 Jul 2013
Results obtained during a multicenter study that compared an automated diagnostic system and standard culture methods confirmed that the automated system was capable of accurately detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures in significantly less time than the standard procedures.

Investigators at the Medical College of Wisconsin (Milwaukee, USA) used the Nanosphere (Northbrook, IL, USA) Verigene Gram-Positive Blood Culture (BC-GP) Test to analyze 1,252 blood cultures containing Gram-positive bacteria that had been collected and tested previously at five clinical centers between April 2011 and January 2012. More...
An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test.

The Verigene BC-GP test is a multiplexed, automated nucleic acid assay for the identification of genus, species, and genetic resistance determinants for a broad panel of the most common Gram-positive blood culture isolates. The Verigene System’s unique instrumentation allows for true random access test processing, enabling on-demand testing directly from positive blood culture bottles with less than five minutes of user hands-on time per test.

The specific targets identified by the BC-GP test include Staphylococcus spp., S. aureus, S. epidermidis, S. lugdudensis, Streptococcus spp., S. pyogenes, S. agalactiae, S. anginosus group, S. pneumoniae, E. faecalis, E. faecium, and Listeria spp. as well as the mecA, vanA, and vanB genes.

BC-GP analysis was performed by laboratory technicians who had been trained by the manufacturer. A single use extraction tray was inserted into the instrument's sample processor (SP), and an aliquot of positive blood culture broth containing Gram-positive organisms was transferred to the sample well within the extraction tray. Nucleic acid was extracted from blood culture samples using magnetic bead-based extraction and reagents contained in the extraction tray. No amplification of nucleic acid was performed. Purified nucleic acid was automatically hybridized to complementary nucleic acid capture probes immobilized on a glass microarray slide within the SP. Capture probes for each BC-GP test target were present in triplicate on the array. Detection of target sequence relied on hybridization of a second, nanoparticle-conjugated, detection probe. This method allowed up to 1,000-fold greater sensitivity than fluorescent probes and required comparatively simple excitation and detection optics. Automated sample processing (nucleic acid extraction and array hybridization) in the SP required 2.5 hours. Reading of the array was conducted in the Verigene Reader following processing and took 30 to 60 seconds.

Compared to the reference culture method, the sensitivity of the Verigene BC-GP test for the bacterial species included in the test ranged from 92.6% to 100%; its specificity was 94.5%–100%. Identification of the mecA gene (a genetic marker for methicillin resistance) in cultures that contained Staphylococcus aureus or S. epidermis (Gram-positive bacteria that are often methicillin resistant) was 98.6% sensitive and 94.3% specific. Identification of the vanA gene (a genetic marker for vancomycin resistance) was 100% sensitive and specific in cultures containing Enterococcus species.

In a retrospective analysis of turn-around-time, identification of methicillin-resistant S. aureus and vancomycin-resistant Enterococcus species with the Verigene BC-GP test was about 42 hours faster than with reference methods.

The investigators concluded that, "The high sensitivity and specificity characteristics of this test, coupled with on-demand testing capability and a [two-hour turnaround time] enable reporting of both the identification and antimicrobial resistance genes of bacteria obtained from blood culture significantly faster than using routine culture methods."

The study evaluating the Verigene Gram-Positive Blood Culture Test was published in the July 2, 2013, online edition of the journal PLOS Medicine.

Related Links:
Medical College of Wisconsin
Nanosphere



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.