We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Infrared Laser Detects Malaria Parasites in Blood

By Labmedica staff writers
Posted on 02 Jan 2008
A new technique uses lasers and non-linear optical effects to detect malaria infection in human blood.

Malaria is a mosquito-borne infectious disease spread by parasites of the genus Plasmodium. More...
Most common in tropical and subtropical regions, there are 350 to 500 million new cases--and one to three million fatalities--reported annually. Most of the fatalities are concentrated in sub-Saharan Africa, where the resources and trained personnel currently required to accurately diagnose the disease are spread the thinnest.


Current detection techniques require trained technicians to stain slides, look for the parasite's DNA signature under the microscope, and then manually count all the visible infected cells, a laborious process dependent on the skill and availability of trained analysts. By contrast, the proposed new technique relies on a known optical effect called third harmonic generation (THG), which causes hemozoin--a crystalline substance secreted by the parasite--to glow blue when irradiated by an infrared laser.

Dr. Paul Wiseman of the departments of physics and chemistry at McGill University said, "People who are familiar with music know about acoustic harmonics. You have a fundamental sound frequency and then multiples of that frequency. Non-linear optical effects are similar: if you shine an intense laser beam of a specific frequency on certain types of materials, you generate multiples of the frequency. Hemozoin has a huge, non-linear optical response for the third harmonic, which causes the blue glow.

A team of scientists led by Dr. Wiseman of the departments of physics and chemistry at McGill University (Montreal, Quebec) developed the radically new technique, which was described in the December 2007 issue of Biophysical Journal. The scientists say the new technique holds the promise of simpler, faster, and far less labor-intensive detection of the malaria parasite in blood samples.

Dr. Wiseman and his colleagues now plan to adapt well-established existing technologies like fiber-optic communications lasers and fluorescent cell sorters to quickly move the technique out of the laboratory and into the field.

We [are] imagining a self-contained unit that could be used in clinics in endemic countries, said Dr. Wiseman. The operator could inject the cell sample directly into the device, and then it would come up with a count of the total number of existing infected cells without manual intervention.


Related Links:
Departments of physics and chemistry at McGill University

New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.