We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




DNA Sequencing of MRSA Predicts Patient Survival

By LabMedica International staff writers
Posted on 23 Aug 2017
Print article
Image: A scanning electron micrograph (SEM) of a human neutrophil ingesting methicillin resistant Staphylococcus aureus (MRSA) (Photo courtesy of US National Institute of Allergy and Infectious Diseases).
Image: A scanning electron micrograph (SEM) of a human neutrophil ingesting methicillin resistant Staphylococcus aureus (MRSA) (Photo courtesy of US National Institute of Allergy and Infectious Diseases).
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that has become resistant to most types of antibiotics, and up to 20% of patients with invasive infections die. Although S. aureus is a common bacterium that lives on the skin, if it gets inside the body through a cut it can cause septicemia.

Sequencing the DNA of the MRSA superbug can accurately identify patients most at risk of death and could help medical professionals develop new treatments as they move towards personalized medicine. This potentially life-threatening infection affects thousands of patients every year in the UK. There are two main strains of MRSA found in UK hospitals, called CC22 and CC30.

A team of scientists led by the Milner Centre for Evolution at the University of Bath (UK) were able to study blood samples from around 300 patients with septicemia, looking at how the different MRSA strains behaved and assessing their lethality. DNA sequencing was performed alongside measuring the toxicity, or ability to kill human cells, of the MRSA strains as well as their ability to form dangerous biofilms. Biofilms form when groups of bacteria secrete proteins that stick them together and coat surfaces in slime. Biofilms makes it easier for bacteria to evade the patient's immune system and can block the action of antibiotics. They are a particular problem in patients using catheters where up to half of patients can get an infection.

The scientists examined the genetic code of the infecting MRSA bacteria, and paired this information with individual risk factors for each patient, including age, presence of any other illnesses, and noted whether the patient was still alive after 30 days of the infection and if deceased whether MRSA contributed to their death. They found that for CC22 strains, both their toxicity and biofilm forming abilities played a significant role in whether the patient survived their infection. However these did not appear to be involved in the patient outcome for those infected with CC30 strains, meaning this strain is killing people in a different way.

Ruth C. Massey, PhD, a senior lecturer who led the study, said, “Unfortunately 20% of patients with septicemia die and cases are on the increase which suggests that existing infection control and treatment options are insufficient to tackle this important health problem. We've identified that MRSA kills people in different ways depending on the strain, and that the low toxicity CC30 strains are killing patients in an as yet unknown mechanism. It could be that they are better at evading the immune system.” The study was published on August 7, 2017, in the journal Nature Microbiology.

Related Links:
University of Bath

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.