We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Increased Genome Variance Found in Mitochondria DNA Study

By LabMedica International staff writers
Posted on 19 Dec 2017
Print article
Image: Manual isolation of a single live mitochondrion. The mitochondria can be seen under a microscope where a thin glass tube can be used to isolate a single mitochondrion from the dendrite region of the mouse neuron (Photo courtesy of Jacqueline Morris and Jaehee Lee, Perelman School of Medicine, University of Pennsylvania).
Image: Manual isolation of a single live mitochondrion. The mitochondria can be seen under a microscope where a thin glass tube can be used to isolate a single mitochondrion from the dendrite region of the mouse neuron (Photo courtesy of Jacqueline Morris and Jaehee Lee, Perelman School of Medicine, University of Pennsylvania).
A team of molecular biologists has developed a method for identification of genetic variants present at the single-mitochondrion level in individual mouse and human neuronal cells, allowing for the extremely high-resolution study of mitochondrial mutation dynamics.

Mitochondria have been implicated in several human diseases, including mitochondrial disorders, cardiac dysfunction, heart failure, and autism. The number of mitochondria in a cell can vary widely by organism, tissue, and cell type. For instance, red blood cells have no mitochondria, whereas liver cells can have more than 2000. Each mitochondrion is composed of compartments, comprising the outer membrane, the intermembrane space, the inner membrane, and the cristae and matrix that carry out specialized functions.

Investigators at the University of Pennsylvania (Philadelphia, USA) reported in the December 5, 2017, issue of the journal Cell Reports that they used a method for isolation and analysis of the genomic DNA from a single mitochondrion, without loss of its spatial origin within a cell, to investigate the nature of mitochondrial genome variation in human and mouse brain cells. The study considered multiple scales - from different cells in a single individual to different subcellular locations within a single cell.

Results revealed extensive heteroplasmy between individual mitochondrion, along with three high-confidence variants in mouse and one in human that was present in multiple mitochondria across cells. Heteroplasmy is the presence of more than one type of organellar genome (mitochondrial DNA or plastid DNA) within a cell or individual. It is an important factor in considering the severity of mitochondrial diseases. Since most eukaryotic cells contain many hundreds of mitochondria with hundreds of copies of mitochondrial DNA, it is common for mutations to affect only some mitochondria, leaving most unaffected.

The data obtained during this study suggested that even in inbred strains of mice, there was a broad segregating mitochondrial variation, within and across individuals, resulting in a large variation in individual heteroplasmy load. Although the data were more limited, it was evident that human samples showed unusual levels of heteroplasmy arising from within single-mitochondrion polymorphism.

"By being able to look at a single mitochondrion and compare mutational dynamics between mitochondria, we will be able to gauge the risk for reaching a threshold for diseases associated with increasing numbers of mitochondrial mutations," said senior author Dr. James Eberwine, a professor of systems pharmacology and translational therapeutics at the University of Pennsylvania. "This roadmap of the location and number of mutations within the DNA of a mitochondrion and across all of a cell's mitochondria is where we need to start."

Related Links:
University of Pennsylvania

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.