We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Modified T-Cells Attack Tumors without Triggering Autoimmune Disease

By Gerald M. Slutzky, PhD
Posted on 22 Nov 2016
A team of molecular immunologists has devised a method to direct T-cells to recognize and fight cancer cells without risk of the modified cells attacking normal tissues and thereby triggering autoimmune disease.

T-cells enable the immune system to recognize invading microbes and diseased cells while ignoring healthy cells. More...
The ability of a T-cell to recognize a specific microbe or diseased cell is determined by two proteins that pair to form its T-cell receptor (or TCR). The paired receptors are exported to the surface of the T-cell, where they bind to infected or cancerous cells. Those T-cells that produce receptors that bind healthy cells are eliminated during development.

Cancer cells are difficult to identify because they are similar to healthy cells. Efforts to develop therapies that enhance the immune system’s ability to recognize cancer cells have had only limited success. One successful approach - T-cell receptor gene therapy - modifies T-cells to destroy cancer cells by transfecting them with genes that encode a tumor-specific TCR.

This technique produces T-cells possessing two T-cell receptors – the cancer-specific receptor and the one it had originally – so it is possible for proteins from the two receptors to mispair. This impedes the correct pairing of the cancer-specific T-cell receptor, reducing the effectiveness of the therapy. More importantly, mispaired T-cell receptors may cause the immune cells to attack healthy cells in the body, leading to autoimmune disease. To make T-cell receptor gene therapy safe, the cancer-specific receptor must not mispair with the resident receptor.

Investigators at the California Institute of Technology (Pasadena, CA, USA) devised a new strategy to prevent T-cell receptors from mispairing. They altered the arrangement of particular regions in a cancer-specific T-cell receptor to make a new receptor called a domain-swapped T-cell receptor (dsTCR). Like normal T-cell receptors, the dsTCRs were exported to the T-cell surface and were able to interact with other proteins involved in immune responses.

They reported in the November 8, 2016, online edition of the journal eLife that T-cells armed with dsTCRs were able to kill cancer cells and prevent tumor growth in mice. Unlike other cancer-specific receptors, dsTCRs did not mispair with the resident T-cell receptors in mouse or human cells, and did not cause autoimmune disease in mice.

"As T-cells are produced, the immune system "auditions" them, eliminating those that react to healthy cells and selecting those with potential to recognize diseased cells," said first author Dr. Michael Bethune, a postdoctoral researcher in biology and biological engineering at the California Institute of Technology. "However, in T-cells engineered to express a second TCR, the introduced chains can mispair with the resident chains, resulting in TCRs with unintended and unpredictable specificity. These mispaired TCRs are not auditioned by the immune system, and some will target healthy cells causing autoimmunity."

Related Links:
California Institute of Technology



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
Hemodynamic System Monitor
OptoMonitor
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.