Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Proteins in Cell Nuclear Membrane Actively Influence Gene Expression

By Gerald M. Slutzky, PhD
Posted on 15 Nov 2016
A team of cell biologists has brought to light new information as to how proteins in the nuclear membrane act to regulate the expression of genes that determine how a cell functions and what role it plays in the organism.

The nucleoporins are a family of proteins in the membrane of the cell nucleus, which are the constituent building blocks of the nuclear pore complex (NPC). More...
The nuclear pore complex is a massive structure that extends across the nuclear envelope, forming a gateway that regulates the flow of macromolecules between the cell nucleus and the cytoplasm. Nuclear pores in turn allow the transport of water-soluble molecules across the nuclear envelope. Nucleoporins, a family of around 30 proteins, are the main components of the nuclear pore complex in eukaryotic cells.

The organization of the genome in the three-dimensional space of the nucleus is coupled with cell type-specific gene expression. However, how nuclear architecture influences transcription that governs cell identity remains unknown. A recent paper in the November 2, 2016, online edition of the journal Genes & Development has described a crucial role of NPC components in the regulation of cell type-specifying genes and highlighted nuclear architecture as a regulatory layer of genome functions in cell fate.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) employed a technique called DamID to determine where two nucleoporins, Nup153 and Nup93, came into contact with the genome in a human bone cancer cell line. DamID (DNA adenine methyltransferase identification) is a molecular biology protocol used to map the binding sites of DNA- and chromatin-binding proteins in eukaryotes. DamID identifies binding sites by expressing the proposed DNA-binding protein as a fusion protein with DNA methyltransferase. Binding of the protein of interest to DNA localizes the methyltransferase in the region of the binding site. Adenosine methylation does not occur naturally in eukaryotes and therefore adenine methylation in any region can be concluded to have been caused by the fusion protein, implying the region is located near a binding site.

Results revealed that the NPC components Nup93 and Nup153 bound to superenhancers (SE), which are regulatory structures that drive the expression of key genes that specify cell identity. Nucleoporin-associated SEs localized preferentially to the nuclear periphery, and the absence of Nup153 and Nup93 resulted in dramatic transcriptional changes of SE-associated genes.

"Our research shows that, far from being a passive enclosure as many biologists have thought, the nuclear membrane is an active regulatory structure," said senior author Dr. Martin W. Hetzer, research professor at the Salk Institute for Biological Studies. "Not only does it interact with portions of the genome to drive gene expression, but it can also contribute to disease processes when components are faulty. People have thought the nuclear membrane is just a protective barrier, which is maybe the reason why it evolved in the first place. But there are many more regulatory levels that we do not understand. And it is such an important area because so far, every membrane protein that has been studied and found to be mutated or mis-localized, seems to cause a human disease."

Related Links:
Salk Institute for Biological Studies


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.